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Abbreviations 

 

BA Brodmann Area – region of the cortex defined and then numbered 

by the German neurologist K. Brodmann in 1909. The nomencla-

ture is based on the cell organization. 

CNS Central Nervous System – comprises the brain, spinal cord and 

retina and coordinates each activity of the body. 

PICA Posterior Inferior Cerebellar Artery – one of the three major arter-

ies of the cerebellum. 

RMSE Root Mean Square Error –quantifies the mean distance between 

two data series by 
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 were ∆Xi and ∆Yi are the horizontal and vertical distances between 

the data series and k is the number of data points. 

SCA Superior Cerebellar Artery – one of the three major arteries of the 

cerebellum. 

TMS Transcranial Magnetic Stimulation  – a non-invasive method to 

stimulate neurons of the brain by inducing weak electric currents. 
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1  Introduction 

 

Motor control is an integral component of human life. One might even argue that 

communication via coordinated mouth movements and therefore all achievements of 

modern civilization would never have been possible without motor control. Human 

behavior is crucially bound to movement, which requires the central nervous system 

(CNS) to coordinate the contractions of over 600 muscles consistently in order to 

enable the movements of approximately 200 bones. Despite this challenge, we easily 

manage to perform smooth and precise movements even under constantly changing 

conditions. Everyday life provides countless demands to our motor system, and there 

are ubiquitous examples for the importance of motor learning. They range from the 

development of relatively broad skills such as walking to the emergence of more 

subtle motor skills such as typing this thesis. Furthermore, motor learning forms an 

intrinsic element in sports: Tripping movements in soccer, for instance, need to be 

adapted to the structure and condition of the ball or the playing field. Then again, all 

parts of our body are constantly changing during our life time due to growth (in the 

long run) or fatigue (in the short run), and the same movement will never require the 

exact same cooperation of muscles. Therefore the nervous system cannot rely on an 

invariant motor plan. Thus, it is obvious that motor learning is central for human 

development, and one can imagine the dramatic change in viability if motor learning 

is impaired.  

This thesis deals with central research questions in the field of motor learning. Basic 

principles of human adaptability to changed visual environments are investigated and 

the involvement of explicit knowledge as well as the contribution of the cerebellum 

to motor learning are analyzed. The results give further insight into the location of 

motor learning within the CNS. Profound knowledge about motor learning principles 

and its neural localization are the basis for rehabilitation programs when motor learn-

ing capacities need to be revived after injury or maintained during illness and old 

age. In addition, it can help athletes to improve their motor learning skills. Last but 

not least, this knowledge represents a gateway to comprehending intelligence in 

brains and to producing intelligent machines which learn from experience.  

Chapter 1 gives an introduction to one particular form of motor learning, namely 

sensorimotor adaptation, and presents common methods for its investigation. Then, 
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selected research results for behavioral characteristics as well as their theoretical 

implications are described (their neural correlates are discussed in more detail in 

Chapter 7.1). This part is followed by an introduction to the neural localization of 

sensorimotor adaptation focusing on the role of the cerebellum. For both parts, the 

topics are also discussed in greater depth within the introduction section of each 

study (Chapters 2.2, 3.2, 4.2, 5.2 and 6.2). Last but not least, the consequential objec-

tive for this thesis is outlined. 

 

1.1  Sensorimotor adaptation 

Sensorimotor adaptation includes all types of motor learning where an already exist-

ing motor behavior is altered. Although sensorimotor adaptation is a specific form of 

motor learning, it displays certain memory and learning phenomena that are similar 

to other types of motor learning, such as skill acquisition or sequence learning. 

Therefore, conclusions for memory or motor learning in general can be drawn from 

results from sensorimotor adaptation studies (Krakauer 2009).  

The process of adaptation is induced by either intrinsic changes related to body 

growth (Held and Bossom 1961; Held 1965; Howard 1982; Bullock and Grossberg 

1988), by spontaneous drift between the senses (Robinson 1976; Howard 1982), by 

compensation due to injury (Howard 1982; Jakobson and Goodale 1989; Goodale et 

al. 1990) or by extrinsic changes such as environmental variations (Bock et al. 2010). 

Whatever the type of change, it must first be perceived via sensory feedback. For 

example, a soccer player will feel with the help of his or her proprioceptive and vis-

ual organs that the same movement does not have the same effect when playing on 

artificial turf instead of lawn. Summing up, visual, acoustic or proprioceptive feed-

back plays a pivotal role in the process of sensorimotor adaptation.  

This fact is widely used in sensorimotor adaptation research, where researchers de-

liberately change one or more feedback sources during the performance of standard-

ized movements in a laboratory setting (Helmholtz 1867; Stratton 1897; Howard 

1971). When first exposed to a change of feedback, i.e., a distortion, the subjects’ 

behavior deteriorates followed by a gradual improvement until the movements are 

again performed accurately. All movements are recorded and can be analyzed and 

compared. This procedure was successfully applied for the analysis of sensorimotor 
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adaptation during walking (Morton and Bastian 2004), pointing to visual targets 

(Bock et al. 2003; Tong and Flanagan 2003), tracking a moving target (Bock et al. 

2001; Mierau et al. 2009), grasping (Rand et al. 2004; Weigelt and Bock 2007) or 

saccadic eye movements (Bock et al. 2008; Xu-Wilson et al. 2009).  

Various feedback distortions have been used in sensorimotor adaptation studies. For 

example researchers apply forces (mechanical distortions) to the performing limb in 

order to generate a mismatch between the intended and the sensed movement 

(Shadmehr and Mussa-Ivaldi 1994; Donchin et al. 2003). Also, either visual or 

acoustic feedback can be changed to induce a mismatch between the felt and the seen 

movement (Bock 1992; Seidler et al. 2001a) or the heard movement (Hawco and 

Jones 2010), respectively. This thesis only contains studies of visuomotor adaptation, 

i.e., the adaptation to visual distortions. These are commonly encountered in daily 

life, for example when we experience reversals of visual feedback by watching our-

selves performing a movement in a mirror (where moving right/left leads to left/right 

movements of our mirror image). Also, lateral shifts of vision occur during observa-

tion of underwater objects. Another example are movements with a computer mouse, 

which are amplified into cursor movements on the screen. Furthermore, rotation of 

visual feedback appears during the control of an excavator, when movements of a 

lever lead to shovel movements in different directions. 

Sophisticated variations of experimental conditions using the above mentioned 

movements and distortions can give insight into the behavioral mechanisms of sen-

sorimotor adaptation, which again can lead to conclusions about the neural mecha-

nisms underlying sensorimotor adaptation. For the direct exploration of neural 

mechanisms, the following research methods are used: 

- In clinical studies, patients with clearly circumscribed lesions within the CNS 

perform experiments. Deficits indicate the contribution of the respective brain 

region to the performed task (Martin et al. 1996; Schaefer et al. 2009). 

- An increasingly popular method is the use of imaging techniques such as 

functional magnetic resonance imaging or positron emission tomography. 

With these methods, brain activation is measured during the performance of 

the motor learning task (Imamizu et al. 2000; Diedrichsen et al. 2005). 
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- Also, electroencephalographic activity is used to analyze the temporal and 

spatial involvement of different brain regions in adaptation (Berndt et al. 

2005) 

- In a fourth method, brain regions are identified with the help of transcranial 

magnetic stimulation (TMS), or virtual lesions, applied over specific brain ar-

eas (Lee and van Donkelaar 2006; Hadipour-Niktarash et al. 2007). 

- On the cellular level, neurophysiological recordings of single-cell activity are 

performed in animals (Georgopoulos et al. 1986; Paz and Vaadia 2009). 

 

1.1.1  Behavioral characteristics of sensorimotor adaptation 

Implicit and explicit processes in sensorimotor adaptation 

Implicit motor learning refers to behavior which is performed automatically, non-

intentionally (Frensch 1998) and without use of excessive mental concentration 

(Leonard 1998). While participants are unaware of implicit learning, explicit learning 

refers to conscious problem-solving. With the help of explicit learning, or declarative 

knowledge, task variables can be discovered (Green and Flowers 2003) and commu-

nicated (Leonard 1998). Especially more complex motor learning processes often 

contain explicit forms of knowledge acquisition (Kandel et al. 1995). Yet, the role of 

explicit knowledge in sensorimotor adaptation is under debate until today. 

Implicit processes in sensorimotor adaptation were already observed about one hun-

dred years ago: after removing the distortion, movements are again impaired and 

only gradually come back to normal behavior during a so called de-adaptation phase 

(Stratton 1897; Gibson 1933; Lazar and Van Laer 1968). Therefore it is safe to say 

that a lasting neural change, i.e., a recalibration (Howard 1971) or spatial realign-

ment (Redding and Wallace 1996) of the CNS, occurs. More recently, recalibration 

has also been described by the concept of an internal model (Wolpert et al. 1995). 

This computational model describes the development of a motor skill based on the  

internal representation of the properties of our body and the environment. The model 

allows the anticipation of consequences of movement (forward model) as well as the 

determination of motor commands required to achieve a desired output (inverse 

model). 
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Since the beginning of research on sensorimotor adaptation, studies have revealed 

many characteristics of recalibration by means of aftereffect tests. The data shows 

that recalibration of sensory-to-motor transformation rules is relatively stable, show-

ing retention even after up to a month (Shadmehr and Brashers-Krug 1997; Bock et 

al. 2001; Wigmore et al. 2002). Also, it is clear that recalibration is not task-specific, 

since it generalizes to untrained work regions (Bedford 1989; Shadmehr and Mous-

savi 2000), transfers to the other arm (Sainburg and Wang 2002) and to different 

movement categories (Abeele and Bock 2003). Furthermore no active movement is 

necessary for recalibration to occur (Cressman and Henriques 2010) and, above all, 

recalibration is not necessarily associated with an awareness of the distortion, i.e., 

recalibration develops implicitly (Kagerer et al. 1997; Abeele and Bock 2003; Buch 

et al. 2003; Klassen et al. 2005; Michel et al. 2007). 

The remaining difference between aftereffect tests and adaptation data, for example 

partial transfer of adaptation (80%) to a different movement category (Abeele and 

Bock 2003), led to the common opinion that at least two distinct processes exist dur-

ing the adaptation phase (Redding and Wallace 1993; Krakauer et al. 2000; Bock et 

al. 2001), one of them being recalibration. But what is the nature of the additional 

processes? If recalibration occurs implicitly, could the remaining processes include 

conscious or strategic, thus explicit, components? And could explicit knowledge 

therefore be proven to be beneficial to sensorimotor adaptation?  

Recent research particularly confines to stating a slow process, recalibration, and a 

fast process (Smith et al. 2006; Kording et al. 2007; Ethier et al. 2008). The authors 

describe how the fast process responds strongly to performance error and quickly 

reduces it, but they restrain from referring to explicit or strategic processes. On the 

other hand, Redding and Wallace name the fast process strategic control and de-

scribe it by an agglomerate of implicit processes like feedback based corrections or 

associative learning and explicitly processed or intentional feed forward strategies 

(Redding and Wallace 1993; Redding and Wallace 1996; Redding et al. 2005). Ac-

cordingly, some other authors use the term “strategies” only for explicit feed forward 

processes (Welch 1978; McNay and Willingham 1998; Heuer and Hegele 2008a). 

Welch (1978), for example, proposes that explicit knowledge must develop as a basis 

prior to any cognitive strategies to develop. Following this reasoning, the existence 

of cognitive functions in sensorimotor adaptation might be an indication for existing 
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explicit knowledge. Already in the 1970s, Fitts and Posner suggested that early learn-

ing could be cognitively demanding (1967). This suggestion was confirmed by 

means of a dual-task paradigm which showed a high demand of resources pertinent 

to attention and spatial transformations in the early stages of sensorimotor adaptation 

(Eversheim and Bock 2001).  

Furthermore, several studies showed age-related deficits during adaptation phase but 

not during aftereffect tests, which was explained by a concurrent age-related deficit 

in strategy formation (McNay and Willingham 1998), a deficit in cognitive factors 

(Fernandez-Ruiz et al. 2000), or a decay of executive functions (Bock and Girgenrath 

2006). McNay and Willingham (1998) used “strategy formation” synonymously to 

“explicit knowledge”; however they did not directly test for it. Still, these results are 

a strong indication for the involvement of explicit knowledge during adaptation. This 

indication is backed up by the fact that older participants show evidence of impaired 

explicit processes (Craik and Jennings 1992). However, only one study did test ex-

plicit knowledge and sensorimotor adaptation at the same time in elderly subjects 

(Bock 2005). Again, the results show the same pattern of impaired adaptation but 

spared recalibration. Additionally, approximately 80% of the young subjects cor-

rectly described the nature of the distortion in an explicit knowledge questionnaire, 

as opposed to only approximately 8% of the elderly subjects.  

Further hints for the involvement of explicit knowledge in adaptation processes 

comes from Shadmehr’s laboratory (Hwang et al. 2006). In this study, depending on 

the starting position of their pointing movement subjects adapted either to clockwise 

or counterclockwise force fields. Those subjects who came to understand the force 

pattern showed better adaptation (i.e., a higher learning index, determined by adapta-

tion and aftereffect data). The authors concluded that in force field learning the brain 

relies on implicit as well as on explicit learning systems. Similarly, it was shown that 

among patients with prefrontal cortical lesions, only those who acquired explicit 

knowledge of the distortion were also able to adapt (Slachevsky et al. 2003). 

On the other hand, whenever subjects are instructed to use an explicit strategy during 

adaptation to a visual distortion, their strategy proves to be detrimental for adaptation 

(Mazzoni and Krakauer 2006). This study is described in more detail in the introduc-

tion of the first study (Chapter 2.2). Some researchers further argue that improved 

recalibration is observed when explicit knowledge is prevented by stepwise introduc-
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tion of the distortion, e.g., without the occurrence of large movement errors and thus 

awareness of the change (Redding et al. 2005). Yet, studies using gradual adaptation 

yield contradictory results, some showing enhanced recalibration as measured by 

aftereffect test (Kagerer et al. 1997; Ingram et al. 2000; Michel et al. 2007) and some 

not (Klassen et al. 2005; Werner et al. 2009).  

Summing up, there is increasing evidence for the involvement of explicit knowledge 

during sensorimotor adaptation. However, it is still under debate whether this explicit 

knowledge has a beneficial, neutral or detrimental effect on the adaptation process. 

This research question is investigated in the first study of the present thesis. 

Adaptive processes in sensorimotor adaptation 

Another basic question in sensorimotor adaptation research is whether adaptation to 

different distortions follows similar processes, where the term process is used in a 

descriptive way for the observed behavioral changes. After analysis, quantification 

and comparison of the behavioral processes, conclusions can be drawn about the un-

derlying neural processes, or their internal representation, respectively. Similarity or 

disparity of adaptive processes can be examined via two different approaches. First, 

one can analyze the effect of successive adaptation to different distortions. Second, 

researchers compare the characteristics of adaptive processes to different distortions. 

In the following, research investigating adaptation via the two approaches is summa-

rized. 

During adaptation to successive distortions several effects occur simultaneously. On 

the one hand, an improvement of the subject’s ability to adapt, i.e., learning to learn, 

was found (Bock et al. 2001; Seidler 2004). This effect indicates an increasing plas-

ticity within the CNS after frequent adaptation. On the other hand, the so called con-

solidation effect suggests that motor memories go from fragile to protected states 

over time. This effect was shown in some (Brashers-Krug et al. 1996; Shadmehr and 

Brashers-Krug 1997; Krakauer et al. 2005) but not all studies on successive sensori-

motor adaptation (Caithness et al. 2004), and it remains debatable (Bock 2003; Bock 

et al. 2003; Caithness et al. 2004). However, both results do not shed any light on the 

question of similarity or disparity of adaptive processes. 

In a further series of studies it was argued that impairment, or interference, of adapta-

tion to a second distortion after adaptation to a first one suggests that both distortions 
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are based on common processes, since they demand the same resources in the work-

ing memory (Krakauer et al. 1999; Wigmore et al. 2002). However, an overview of 

the existing literature reveals that the effect of one distortion A to a subsequent dis-

tortion B explicitly depends on the direction of feedback. When exposed to distor-

tions acting within the same direction (for example first to a small rotation and then 

to a larger one), the subjects show an improved second adaptive process (Abeele and 

Bock 2001b; Wigmore et al. 2002; Bock et al. 2003). Contrarily, successive adapta-

tion to rotations/force fields in opposite directions leads to an impaired adaptation 

process (e.g., Brashers-Krug et al. 1996; Wigmore et al. 2002; Caithness et al. 2004; 

Miall et al. 2004). The same holds for distortions that differ in their nature (e.g., me-

chanical versus visual) or their coupling to the hand (e.g., position versus velocity 

dependent): facilitation is observed for distortions acting in the same direction (Tho-

mas and Bock 2010), while opposite directions again lead to impairment (Tong et al. 

2002; Bays et al. 2005). Subsequent distortions in independent directions conse-

quently lead to independent adaptation (Krakauer et al. 1999). This sequence of stud-

ies led to the conclusion that adaptation to different distortions might be based on 

common processes (Thomas and Bock 2010) and that the adaptive behavior of the 

first distortion is gradually modified during the second adaptation phase (Abeele and 

Bock 2001a; Bock et al. 2003). 

Instead of disentangling the different effects of successive adaptation, one can also 

compare the characteristics of different adaptive processes. This method is used in 

Study 2 and 3 of the present thesis. Also, Lackner and Dizio (1994) compared the 

characteristics of adaptation to force fields to adaptation to the Coriolis force, as ex-

perienced by subjects when performing pointing movements during passive body 

rotation. Because of considerable variations in the adaptation processes, such as the 

rate of adaptation and the perception of the force, the authors argued in favor of a 

fundamental difference in terms of adaptation mechanisms. According to them, adap-

tation to force fields leads to the development of a new internal representation, while 

adaptation to a Coriolis force corresponds to learning of an external tool. However, 

the difference in adaptation rate can easily be explained by the deviating number of 

target points in the two adaptations (Krakauer et al. 2000).  

Accordingly, on should bear in mind that differences in behavioral processes are not 

necessarily caused by differences in terms of the distortion but could also be due to 
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methodical differences. The approach to compare the characteristics of different 

adaptive processes is therefore most suitable when the compared distortions can be 

tested under similar conditions. As a consequence, the comparison of adaptive proc-

esses under mechanical versus visual distortions has preferably been studied during 

successive adaptation as described earlier, or, even better, with the help of imaging 

studies. For visual distortions, however, some comparisons have been made. In one 

study (Krakauer et al. 2000) subjects performed pointing movements while adapting 

either to an altered gain or to a rotation of visual feedback. The results show several 

differences in terms of the adaptation processes:  

- The subjects learn the new gain at the same rate, independent from the num-

ber of target distances. In contrast, learning the rotation is less complete and 

takes longer when more target directions are used. 

- After successful gain adaptation, a learning transfer to untrained target dis-

tances and directions is found, while rotation adaptation only transfers to un-

trained distances. These results are in line with the finding that amplitude and 

direction are distinct parameters of motor control and planning (e.g., Gordon 

et al. 1994; Rossetti et al. 1995; Vindras et al. 2005). 

In a further study the comparison of different reversals of visual feedback revealed a 

slower adaptation process under up-down reversal than under left-right reversal 

(Caselli et al. 2006). However, the differences are small due to a high variability, and 

the authors associate this difference to the frequent exposure to distortions similar to 

a left-right reversal in everyday life. Already in 1989, Cunningham et al. conducted 

an extensive study comparing adaptation to several rotation angles (0°, 45°, 90°, 

135° and 180°), to left-right and to up-down reversals of visual feedback. The au-

thors found no distortion specific decrease in adaptation, but state a consistent pattern 

of the visual-to-motor conversion mechanism, according to which all distortions re-

quire the selection of new movement axes and/or directions. From this mechanism, 

they draw the conclusion of the existence of a general, or common, adaptation proc-

ess. Yet, no detailed analysis of the data was shown to support this interpretation. 

Today, the two mentioned distortions, namely rotation and reversion of visual feed-

back, are commonly used in sensorimotor adaptation research. Under adaptation to 

rotated visual feedback an interplay of a gradual process which slowly rotates sub-
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jects' responses by up to +/-90°, and a discrete process which changes the responses 

by means of axis inversion has been shown (Abeele and Bock 2001b). However, it is 

still not clear by which adaptive processes the learning of visual reversal is achieved, 

and whether responses to both distortions follow common principles. Study 2 and 3 

of the present thesis are aimed at clarifying this point. 

Generalization in sensorimotor adaptation 

Another essential question in sensorimotor adaptation research concerns the gener-

alization or transfer of sensorimotor adaptation: Does adaptation to a specific distor-

tion transfer to different body segments, different movements or different work-

spaces? Apart from the ethical component (scientists do not want their subjects to be 

impaired in their movements after participating in an experiment) an answer to these 

questions can give deep insight into the nature of motor learning and the involved 

brain structures. In the following, selected studies on transfer of sensorimotor adapta-

tion are described. 

Intermanual transfer, i.e., transfer from one arm to another, has been investigated in 

quite a few studies (e.g., Taub and Goldberg 1973; Imamizu and Shimojo 1995; 

Wang and Sainburg 2004; Wang and Sainburg 2006). However, it is still unclear 

whether sensorimotor adaptation is stored in an effector-specific memory. Apart 

from intermanual transfer, adaptive behavior can be transferred from shoulder to 

wrist pointing movements (Seidler et al. 2001b), from visual to auditory targets (Har-

ris 1963; Michel et al. 2007) and from pointing movements to saccades (Bock et al. 

2008). These results indicate that at least parts of the adaptive process are centrally 

located and can be accessed by different subsystems such as joints, end-effectors or 

sensory modalities. 

Another series of experiments investigated whether adaptation to one distortion 

transfers to different movements or tasks using the same end-effector. In one study, 

subjects first adapted to a 30° rotation of visual feedback while doing pointing 

movements, second to a -30° rotation while doing either tracking, figure-eight draw-

ing, or pointing movements, and third again to a 30° rotation while doing pointing 

movements. Interference was only observed for those subjects performing the identi-

cal task while experiencing opposite rotations (Tong and Flanagan 2003). The au-

thors explain their results by the existence of task specific memory resources. How-
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ever, it is also possible to assume a flexible complex system with transfer not being 

obligatory but possible. 

In fact, several additional studies showed transfer from pointing to circular move-

ments during force field adaptation (Conditt et al. 1997), or from pointing to tracking 

movements and vice versa during visual rotation adaptation (Abeele and Bock 2003; 

Bock 2005; Bock and Girgenrath 2006). It is remarkable that Abeele and Bock 

(2003) found less transfer from tracking to pointing than from pointing to tracking 

movements. This sort of asymmetric transfer was also shown very recently by Ike-

gami (2010): Adaptation to a visual rotation is almost completely transferred from 

discrete to rhythmic pointing movements, but not vice versa. Both studies might be 

explained by taking into consideration that discrete pointing movements include 

components of feed forward control (Jordan and Rumelhart 1992) as well as feed-

back or online control (Kawato 1990; Gomi and Kawato 1993), whereas tracking or 

rhythmic pointing movements are mainly controlled by online control. Thus, if feed 

forward components are not trained in one condition (tracking, rhythmic pointing), 

they cannot be transferred to the other one. 

Marotta et al. (2005) further investigated the transfer from identifying different ori-

entations to pointing to different locations under reversal of visual feedback. They 

found an independent recalibration of the “identify orientation” and the “point to 

location” systems, i.e., no transfer between the two conditions. The authors inter-

preted their results as two sensorimotor adaptation models occurring in parallel. This 

notion of parallel systems suggests a concatenated series of recalibrations within par-

allel neural streams (Henriques et al. 1998; Colby and Goldberg 1999).  

The results of the experiments investigating transfer between different tasks indicate 

that the more similarly different movement tasks are planned and executed the more 

likely adaptive behavior is transferred between them. Based on this premise, it is 

striking how even the identical movement, e.g., pointing movement, sometimes 

transfers to untrained targets (e.g., Bock 1992) and sometimes does not (e.g., 

Imamizu and Shimojo 1995). One of the aims of the present thesis is to elucidate this 

topic (Studies 1, 2 and 3). A meta-analysis of the available literature reveals that after 

adaptation to visual rotation, transfer can be found whenever untrained targets re-

quire a new movement amplitude (Bock 1992; Goodbody and Wolpert 1998; Kra-

kauer et al. 2000), while it does not occur when the targets require a new movement 
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direction. As for the second case, several recent studies report decaying transfer with 

increasing angular distance of the trained targets (Imamizu and Shimojo 1995; 

Imamizu et al. 1995; Roby-Brami and Burnod 1995; Ghahramani et al. 1996; Pine et 

al. 1996; Krakauer et al. 2000; Wang and Sainburg 2004; Wang and Sainburg 2005). 

These studies suggest a (direction wise) local
1
  way of adaptation based on direction-

ally tuned modules. In contrast, adaptation to reversed vision has traditionally been 

assumed to initiate a global recalibration process (Stratton 1897; Harris 1965; Welch 

1986); transfer to untrained directions, however, has never been measured. Likewise, 

adaptation to altered gain is usually achieved globally (Bock 1992; Krakauer et al. 

2000), but local adaptation has also been shown under specific practice conditions 

(Heuer and Hegele 2008b). Thus, it is still under debate whether visuomotor adapta-

tion is a local phenomenon specific for trained targets, or rather a global phenome-

non generalizing across all target directions. 

 

1.1.2 Neural localization of sensorimotor adaptation 

The human brain consists of approximately 100 billion neurons or 100 trillion syn-

apses. Now, which of them are involved in sensorimotor adaptation? Obvious candi-

dates are the motor systems, which are shown schematically in Figure 1. Even within 

textbooks, however, there is no full consensus about their components. Some authors 

exclude the spinal cord and the brainstem (Carpenter 1996), others again include the 

cingulate motor cortex (Mast et al. 2007), the basal ganglia (Carpenter 1996), the 

parietal cortex or even the muscles themselves (Leonard 1998). Also, the respective 

sensory systems could be considered, since adaptation is nothing but an altered trans-

formation of sensory inputs into motor outputs. 

Numerous studies tried to localize sensorimotor adaptation with the help of imaging 

techniques (e.g., Shadmehr and Holcomb 1997; Imamizu et al. 2000; Girgenrath et 

al. 2007; Grafton et al. 2008). Most studies found a widely distributed neural net-

work of adaptation related brain activity. However, size and location of this network 

differ between studies. These deviations can be assumed to occur due to the different 

                                                 
1
 The term local in a strictly mathematical sense would imply recalibration to occur only at the trained 

target. There could be transfer at nearby locations that are mistaken for this target, with the probability 

of confusion decreasing with further distance in direction. But since transfer was observed even at 90° 

separation (Krakauer et al., 2000), the term local is here used in an eye-catching way describing a 

regional process. 
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ways of measuring adaptation related activity. In fact, brain activity during a control 

condition like watching successful trials of the task (Graydon et al. 2005), perform-

ing an eye movement task (Inoue et al. 2000; Floyer-Lea and Matthews 2004) or a 

movement task without distortion (Lang et al. 1988; Inoue et al. 2000; Krakauer et al. 

2004; Graydon et al. 2005) was subtracted from the brain activity during adaptation. 

These control conditions differ from the original adaptation condition not only with 

respect to the absence of the adaptation process itself, but also with respect to the 

absence of movements as well as to the occurrence of performance errors. Yet, these 

errors could for example account for additional brain activity related to an increased 

muscular tone, raised alertness or corrective arm movements. A similar problem oc-

curs when comparing activation of early versus late adaptation (Chapman et al.; 

Krebs et al. 1998; Luaute et al. 2009), since performance errors commonly diminish 

with advancing adaptation. 

 

 

Fig. 1  Scheme of the motor systems (modified from Kandel et al. 1995). The motor areas of the 

cerebral cortex include the primary motor area (Brodmann Area (BA) 4), premotor cortex (lateral BA 

6) and supplementary motor area (medial BA 6).  

If only those studies are considered that use adequate control tasks (at least for part 

of the adaptation process) less activation was detected: adaptation to mechanical dis-

tortions leads to brain activity in the parietal lobe (Brodmann Area (BA) 7), premotor 

cortex of the frontal lobe (BA 6), prefrontal cortex (BA 46), occipital gyrus (BA 18), 

thalamus (all Shadmehr and Holcomb 1997) and cerebellum (Shadmehr and Hol-

comb 1997; Nezafat et al. 2001). Adaptation to visuomotor distortions only relates to 
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brain activity in the parietal lobe (BA 40/39) (Clower et al. 1996; Girgenrath et al. 

2007), premotor cortex (BA 6) (Girgenrath et al. 2007) and cerebellum (Imamizu et 

al. 2000; Imamizu et al. 2003). 

Grafton et al. (2008) further estimated the feed forward and feedback components of 

adaptation to a compensatory tracking task with the help of a state-space model, and 

they associated those components with brain activity: feed forward control therefore 

relates to activity in the inferior parietal lobe (BA 7/40), premotor cortex (BA 6), 

supplementary motor area (BA 6) and cingulate motor area (BA 5/24), whereas feed-

back control relates to brain activity in the posterior superior parietal lobe (BA 7/40) 

and premotor cortex (BA 6). Interestingly, cerebellar activity was only correlated to 

performance errors. 

Instead of analyzing the magnitude of local activity, Tunik et al. (2007) chose a dif-

ferent approach: They examined changes of the network dynamics by focusing on 

the coherence of different brain regions. Their analysis reveals different functional 

interactions for different mechanical distortions: a cortical-basal ganglia network 

being associated to a velocity dependent distortion, and a cortical-cerebellar network 

to a position dependent distortion. Similarly, an investigation of functional connec-

tivity reveals strong connections between the sensorimotor cortex, the anterior cere-

bellum as well as the temporal gyrus at the end of adaptation (Della-Maggiore and 

McIntosh 2005). Dividing the scanned voxels into clusters with similar spatial and 

temporal patterns (cluster analysis), yet another analysis revealed a decreasing activ-

ity in a fronto-parieto-cerebellar network during adaptation to reversed vision (Bal-

slev et al. 2002). 

Summing up, a great challenge in using imaging techniques for the localization of 

sensorimotor adaptation is to differentiate between brain activity related to adapta-

tion and brain activity related to motor execution, for example error correction 

movements. A meta-analysis of the available literature reveals that there are differ-

ences - but also a marked overlap - between neural networks for adaptation to differ-

ent distortions, especially concerning mechanical and visual distortions. Moreover, 

most studies found an involvement of the premotor cortex, the parietal cortex and 

the cerebellum in visuomotor adaptation. Consequently, the following section will 

elaborate on those three brain regions. 
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Further hints for the involvement of the motor cortex including the premotor cortex 

in sensorimotor adaptation comes from studies using TMS and clinical studies. Lee 

et al. (2006) showed a decreased adaptation rate and impaired recalibration during 

aftereffect tests when TMS disrupts the activity in the dorsal premotor cortex at the 

onset of every movement. Since TMS led to straighter movements and had no effect 

on a terminal feedback condition, the authors concluded that the premotor cortex 

contributes to online error correction. By contrast, no effect on adaptation was found 

when TMS was applied at the end of the movement (Lee and van Donkelaar 2006; 

Hadipour-Niktarash et al. 2007). Then again, applying TMS at the end of the move-

ment led to a faster de-adaptation (Hadipour-Niktarash et al. 2007) or impaired reten-

tion (Richardson et al. 2006) when applied to the primary motor area, which indi-

cates an involvement of this brain region in motor memory formation. However, a 

further study applying TMS to primary motor area did find unimpaired retention 

(Baraduc et al. 2004), so the topic remains controversial. The results of two clinical 

studies do not clarify the subject any further: frontal lobe lesions either led to im-

paired prism adaptation (Canavan et al. 1990; Patton et al. 2006; Scheidt and 

Stoeckmann 2007) or had no effect on adaptation (Welch and Goldstein 1972). 

The involvement of the parietal cortex was also analyzed with the help of TMS. Del-

la-Maggiore et al. (2004) showed impaired force field adaptation when TMS was 

applied on the posterior parietal cortex. Furthermore, the application of TMS led to a 

leftward shift in pointing during baseline movements as well as after adaptation to 

visuomotor reversal (Vesia et al. 2006). The authors concluded that TMS alters the 

output of the posterior parietal cortex downstream from the adaptive process, modi-

fying it in motor coordinates. Moreover, since it is known that Alzheimer´s disease 

leads to anatomical changes (Braak and Braak 1991) and a reduction of the regional 

cerebral glucose metabolism in the parietal and frontal lobes (Mielke and Heiss 

1998; Trollor et al. 2005), impaired adaptation for patients with Alzheimer´s disease 

would also confirm the involvement of the parietal cortex in sensorimotor adaptation. 

And in fact, three out of four studies testing adaptation in patients with Alzheimer´s 

disease did yield adaptation deficits compared to healthy control subjects (Weiner et 

al. 1983; Tippett and Sergio 2006; Tippett et al. 2007). In addition, event related lat-

eralization of electroencephalographic activity also seems to affirm the involvement 

of the parietal cortex in adaptation to displaced vision (Berndt et al. 2005). Further-
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more, Newport et al. (2006) showed impaired prism adaptation in a patient with bi-

lateral posterior parietal cortex damage. 

The brain structure whose role in adaptation has been most controversially discussed 

is the cerebellum. Ever since the theory of Marr, Albus and Ito, there has been an 

ongoing dispute about its involvement in motor learning (e.g., Llinas 1981; Thomp-

son 1986; Lisberger 1988; Bloedel 1992). First proposed by Marr (1969) and later 

extended by Albus (1971) and Ito (1984), the so-called Marr-Albus-Ito theory is a 

prime example for deducting a functionality from a neural structure. In short, the 

theory suggests that one neuronal input projection (the climbing fiber) leads to a 

teaching signal that stimulates cerebellar processes to produce the correct output. 

Based on this theory, several computational models on cerebellar learning evolved 

(e.g., Eccles 1967; Jordan and Rumelhart 1992; Kawato and Gomi 1992; Miall et al. 

1993; Haith and Vijayakumar 2009). More recently, Kawato and Wolpert (1998) 

developed the Modular Selection And Identification For Control (MOSAIC) model 

for sensorimotor control, which contains multiple pairs of forward and inverse mod-

els. The selection of the pairs is based on feedback as well as feed forward sensori-

motor information, and they are all thought to reside in the cerebellum (Imamizu et 

al. 2003).  

Despite the vast number of computational models on cerebellar learning, results from 

behavioral experiments remain controversial and the exact role of the cerebellum in 

motor learning is still unclear. Studies on different types of motor learning like vesti-

bulo-ocular reflexes (Anderson et al. 2002), scaling of reflexes (Bloedel and Bracha 

1997) or conditioning (Woodruff-Pak 1997; Timmann et al. 2000; Gerwig et al. 

2003) do support the contribution of the cerebellum to motor learning per se. How-

ever, once the effects of sequence learning were separated from the concurrent 

changes in motor performance, no cerebellar activation could be associated with the 

learning experience in an imaging study (Seidler et al. 2002). Therefore, the cerebel-

lum seems to contribute to performance modification rather than to learning itself for 

this type of motor learning. The same might hold for sensorimotor adaptation, one 

further type of motor learning. There is an ongoing debate in literature focusing on 

this topic, as is outlined in greater detail in the introduction of Study 4 (Chapter 5.2). 

It is striking that despite this debate, out of numerous clinical studies showing im-

paired adaptation in patients with cerebellar disease (Gauthier et al. 1979; Weiner et 
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al. 1983; Deuschl et al. 1996; Martin et al. 1996; Maschke et al. 2004; Diedrichsen et 

al. 2005; Tseng et al. 2007), only one distinguished between adaptation and perform-

ance deficits (Martin et al. 1996).  

This study compares adaptation and motor performance in healthy control subjects 

and two groups of patients, one group with lesions within the area of the posterior 

inferior cerebellar artery (PICA), the other group with lesions within the superior 

cerebellar artery (SCA) area. The authors found PICA lesions to lead to adaptation 

deficits but intact motor performance. This is in sharp contrast to the findings of a 

second cerebellar lesion study, which shows an adaptation deficit following an SCA 

lesion (Pisella et al. 2005). Therefore, it has still to be clarified which specific parts 

of the cerebellum contribute to sensorimotor adaptation. 

 

1.2 Research objective 

The main objective of this thesis is to specify the location of sensorimotor adaptation 

within the CNS. For this purpose two approaches are chosen: 

- Selected behavioral characteristics are investigated. These analyses promise 

not only to reveal basic principles of sensorimotor adaptation, but also to lead 

to a broader knowledge of the neuronal correlates of motor control. 

- Clinical studies give direct insight into the neuronal location of sensorimotor 

adaptation.  

A careful analysis of the existing literature revealed the following scientific questions 

and led to the five studies that form the basis of this thesis (see Table 1).  

Research questions on the behavioral characteristics of sensorimotor adaptation 

The first section of paragraph 1.1.1 showed how explicit processes or declarative 

knowledge are likely to be involved in sensorimotor adaptation. However, it has still 

been unclear whether they have a beneficial or a detrimental effect. This thesis there-

fore tries to further determine the role of declarative knowledge for sensorimotor 

adaptation. To this end, subjects were interrogated regarding the nature of the distor-

tion after they adapted to a visual rotation. Adaptation and aftereffect data of correct 

responders were then compared to that of incorrect responders. This examination can 

provide further insights into a potential involvement of higher brain regions (such as 
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dorso-lateral prefrontal cortex) in the adaptation process, which are candidates for 

the involvement in explicit processes (Willingham 1998; Willingham et al. 2002). 

The second section of paragraph 1.1.1 revealed that there are indeed common basic 

principles to very different distortions such as mechanical and visual distortions. 

However, it also became clear that there are even explicit differences between differ-

ent visual distortions, for example adaptation to an altered gain leading to a more 

global recalibration than adaptation to rotated visual feedback. This thesis compares 

the adaptive processes caused by a rotation and a reversal of visual feedback. To 

clarify the issue, subjects performed pointing movements to targets presented in eight 

different directions during exposure to left-right reversed visual feedback. The direc-

tion of each response was quantified and the time course of those directions was 

separately analyzed for different targets throughout the adaptation phase. This data 

was then compared to the time course of directions under adaptation to visual rota-

tions, which are known to be achieved by an interplay of gradual and discrete proc-

esses. If common principles emerge from this comparison, the results of numerous 

adaptation studies for visual rotation can easily be transferred to adaptation to visual 

reversal and vice versa. Furthermore, it can safely be assumed that similar brain re-

gions are involved in both adaptation processes. 

The last section of paragraph 1.1.1 gave a summary of the existing literature on gen-

eralization in sensorimotor adaptation. Here, one major research focus investigates 

whether adaptation to visual distortions is a directionally local or a global phenome-

non. While adaptation to reversed vision and to altered gain is referred to as being 

global, several studies suggest that adaptation to visual rotations is based on direc-

tionally tuned modules. In this thesis, two approaches are chosen to scrutinize this 

topic:  

- The effect of variable training, i.e., practice in all possible directions, is de-

termined during adaptation to a visual rotation. Therefore, one group of sub-

jects points at eight targets, and another group executes unconstrained arm 

movements throughout the workspace. If the specific condition of variable 

practice leads to improved adaptation and/or recalibration, a global adaptation 

process can be assumed and the local phenomenon found in earlier studies is 

not a rigid constraint of adaptation to rotations. 
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- Adaptation to left-right reversal, which, in the present study, requires a 180°, 

±90°, or no change of response direction depending on target position, is 

compared to adaptation to rotations requiring the same adaptive change. A 

decrement of reversal adaptation can be attributed to a possible interference 

between neighboring modules. Furthermore, an analysis of pointing move-

ments to trained and untrained directions under reversed vision is performed 

and this data is compared to the predictions of a simple Gaussian model of 

superposing neighboring modules. This investigation has the promise to re-

veal whether reversal adaptation is a global or local phenomenon.  

Since neurons of several different brain regions are known to be directionally tuned, 

these analyses can provide knowledge into where the adaptation process is repre-

sented in the CNS. 

Research questions on neural localization of sensorimotor adaptation 

Paragraph 1.1.2 provided a review of neuro-imaging and clinical studies trying to 

localize sensorimotor adaptation within the CNS. Most imaging studies found brain 

activation in the motor cortex (especially the premotor cortex), the parietal cortex 

and the cerebellum during visuomotor adaptation. Further results of clinical as well 

as TMS studies mostly confirmed the involvement of motor and parietal cortices. A 

meta-analysis of the available literature revealed that there has been an ongoing dis-

pute about the involvement of one particular brain structure in motor learning, 

namely the cerebellum. Although imaging and clinical studies as well as modeling 

approaches provide increasing evidence that the cerebellum plays an important role 

in sensorimotor adaptation, it is still not clear whether it participates in the adaptive 

process per se or steers motor performance as a prerequisite for adaptation. Further-

more, it remains to be determined whether different parts of the cerebellum play dif-

ferent roles during adaptation. Therefore, this thesis tries to elucidate the role of the 

cerebellum via two experiments: 

- Adaptation to visual rotation and motor performance in a group of patients 

with cerebellar atrophy but without extra-cerebellar lesions are compared to a 

group of healthy control subjects. In addition, several indicators of adaptive 

success and motor performance are quantified, and a multiple regression 
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analysis of motor performance variables as well as one variable related to 

cerebellar integrity singles out the explanatory variables of adaptive success. 

- Patients with lesions within either the PICA or the SCA territory and a group 

of healthy control subjects are tested on adaptation to visual rotation. As in 

the preceding experiment, adaptation and performance measures are quanti-

fied, compared and used in a multiple regression analysis. Furthermore, cere-

bellar lesion-symptom mapping using magnetic resonance imaging (MRI) 

subtraction analysis is performed in order to reveal cerebellar regions that 

show an overlap related to deficits in adaptation. These analyses might help 

to scrutinize the contribution of the posterior inferior and superior cerebellum 

to visuomotor adaptation. 

 

Research questions on the behavioral characteristics of sensorimotor adaptation 

Does declarative knowledge have a beneficial effect on visuomotor 

adaptation? 
 Study 1 

Are adaptation to rotated and to reversed visual feedback based on 

similar processes? 
 Study 2 & 3 

Is visuomotor adaptation based on local or global processes?  Study 1, 2 & 3 

   

Research questions on the neural localization of sensorimotor adaptation 

Are sensorimotor adaptation and/or motor control located within 

the cerebellum? 
 Study 4 

Which part of the cerebellum plays a role in sensorimotor adapta-

tion? 
 Study 5 

Tab. 1  Outline of the main research questions of this thesis including the corresponding study num-

ber.
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2.1  Abstract 

It has been shown before that sensorimotor adaptation to rotated vision is more gen-

eralized when subjects point at eight, rather than at four or less targets. Here we eva-

luate whether an even more variable practice has additional benefits. One group of 

subjects pointed at eight targets, and another group executed unconstrained arm 

movements throughout the workspace. We found no advantage of the latter group 

with respect to adaptive progress, persistence of adaptation without visual feedback, 

or transfer of adaptation to a new motor task. We therefore concluded that eight tar-

gets are sufficient to yield generalized adaptation. To determine the role of declara-

tive knowledge for sensorimotor adaptation, subjects from both above groups were 

questioned regarding the nature of the distortion after they completed the experiment. 

We found that correct responders showed better adaptive progress, more persistence, 

but the same transfer as incorrect responders. We therefore concluded that the benefit 

of declarative knowledge is task-specific and short-lived, and is therefore probably 

related to strategic control rather than to an adaptive recalibration of the sensorimotor 

system. 
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2.2  Introduction 

It is well established that the acquisition of a new motor skill is more efficient under 

variable than under constant practice, i.e., when subjects train several versions of the 

skill in intermixed order, rather than a single version repetitively. Thus, variable 

practice results in better retention of the trained skill, and in better transfer to com-

pletely new variants of the skill (McCracken and Stelmach 1977; Shea and Kohl 

1991). These findings were interpreted as evidence that variable practice encourages 

the formation of generalized motor programming rules, while constant practice al-

lows subjects to simply reiterate one or a few specific motor commands. 

The advantage of variable practice seems to apply to sensorimotor adaptation as well. 

When subjects are exposed to rotated visual feedback while pointing at one, two, 

four, or eight targets, their speed of adaptation drops with an increasing number of 

targets, but transfer to unpracticed location improves with an increasing number of 

targets, reaching 100% when all eight targets are used (Krakauer et al. 2000). Thus, 

practice of one or a few different responses seems to support a quick but local form 

of adaptation, while practice of eight different responses results in a slower but more 

generalized form of adaptation. In fact, adaptation with eight pointing responses is 

generalized enough to yield substantial transfer even to a completely different 

movement category, namely, manual tracking (Abeele and Bock 2003; Bock 2005). 

One purpose of the present work was to determine whether adaptation becomes even 

more generalized when responses are not limited to a set of eight, but rather are un-

constrained, thus allowing subjects to explore the distorted workspace in any desir-

able detail. Obviously, we cannot expect unconstrained practice to increase the trans-

fer to unpracticed target locations, since transfer was already complete when eight 

targets were used (Krakauer et al. 2000). However, unconstrained practice could im-

prove the speed and magnitude of adaptation, the persistence of adaptation after 

withdrawal of visual feedback, and/or its transfer to manual tracking. 

The second purpose of our study was to evaluate the role of explicit processes for 

sensorimotor adaptation. Previous research has shown that the acquisition of new 

motor skills can be based on explicit processes, which are accessible to conscious-

ness and verbal report, but also on implicit processes, which subjects are not aware 

of (Gentile 1998). The two processes reside in different brain areas (Honda et al. 
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1998), and seem to participate divergently in different skills. For example, verbal 

instructions which enhance explicit knowledge were found to facilitate the acquisi-

tion of some skills (Masters 1992) to have no effect on others (Orrell et al. 2006), 

and even to degrade the acquisition of yet other skills (Hodges and Franks 2001). 

Explicit and implicit processes seem to be involved in sensorimotor adaptation as 

well. Several studies found that subjects were able to adapt under experimental con-

ditions which left them unaware of the type (Abeele and Bock 2003), or even of the 

existence of a visual distortion (Bock 1992; Buch et al. 2003). Another study ob-

served that among patients with prefrontal cortical lesions, only those who acquired 

declarative knowledge of the distortion were also able to adapt (Slachevsky et al. 

2003). These findings indicate that sensorimotor adaptation can be achieved either by 

implicit processes alone or by explicit processes alone, but they leave open whether a 

joint activation of both processes is beneficial, neutral, or detrimental for adaptation. 

In a recent study pertinent to this issue (Mazzoni and Krakauer 2006), subjects were 

exposed to a +45° visual rotation, and were explicitly instructed to point not at the 

currently highlighted target, but rather at its next neighbor -45° away. Unlike in con-

trol subjects, pointing errors of instructed subjects remained low at the onset of expo-

sure, but then gradually increased in an overcompensatory fashion, as if the in-

structed strategy had algebraically added to “regular” adaptation. This outcome has 

been interpreted as evidence that adaptation is purely implicit, and cannot benefit 

from explicit awareness (Mazzoni and Krakauer 2006). Our study was designed to 

qualify this interpretation. We posit that the particular strategy employed in the 

above work, deliberate pastpointing, may indeed be detrimental for adaptation, but 

other explicit processes may be neutral, or even beneficial. To find out, we decided 

not to prescribe any specific strategy, but rather to assess explicit processes by retro-

spective self-report. 

In literature on sequence learning, explicit processes are often quantified as subjects’ 

declarative knowledge of the stimulus sequence, i.e., subjects are asked to verbally 

report the sequence in which stimuli had been presented. In analogy, we quantified 

explicit processes as subjects’ declarative knowledge of the visual distortion they 

were exposed to, and compared the adaptive performance in subjects with and with-

out such knowledge. 
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2.3  Methods 

The experimental set up is outlined in the inset of Figure 1. Subjects observed visual 

targets through a tilted mirror, such that virtual target positions were in a horizontal 

plane. They responded by moving their preferred arm in the same plane. The mirror 

prevented vision of the arm, but the position of their index fingertip was registered 

by the Fastrak® motion analysis system (resolution 120 Hz, 1 mm), and was dis-

played to them in real-time as a cursor, along with the targets. In a tracking task, sub-

jects were asked to follow with their finger as accurately as possible a visual target 

which moved in the display area along an unpredictable path (sum of three sine-

waves: 0.31, 0.69, 0.81 Hz for x, 0.13, 0.31, 1.17 Hz for y, phases varying between 

episodes). Performance was quantified as root mean square tracking error (RMSE), 

discarding the first 500 ms of tracking to minimize the effects of initial cursor off-

sets. In a pointing task, subjects had to point as quickly and accurately as possible 

between a central starting dot and peripheral targets, which appeared at 12 cm dis-

tance from the start in one of the eight cardinal and diagonal directions. Targets were 

presented in a random order. Each appeared for 1.5 s, was then replaced by the start-

ing dot until the finger returned to the center, the next target then appeared, etc. Per-

formance was quantified as error between target and finger direction 100 ms after 

response onset, i.e., before feedback-based corrections could take effect. In an explo-

ration task, subjects executed discrete point-to-point arm movements in absence of 

any external targets, while the cursor remained visible as in the other tasks. Subjects 

were instructed to vary the amplitudes and directions of successive movements as 

they liked, and were encouraged to explore the whole display area with their hand. 

Since no targets were presented, no errors could be quantified in this task. 

The experiment was subdivided into episodes of 50 s (tracking task) or 30 s duration 

(pointing and exploration task), which were separated by rest breaks of 5 s duration. 

Subjects were first familiarized with the experiment by performing one tracking, one 

pointing, and one exploration episode under normal visual feedback, i.e., the cursor 

indicated subjects’ momentary fingertip position correctly. Data registration then 

commenced with a baseline phase, which consisted of three tracking and three point-

ing episodes with normal or absent visual feedback, as shown on the abscissa of Fig-

ure 1a. Next came an adaptation phase of 24 episodes, in which visual feedback was 

rotated by -60° about the starting dot. One half of the subjects executed only the 
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pointing task during this phase (group P), while the other half executed one pointing 

episode, then three exploration episodes, then again one pointing and three explora-

tion episodes, etc. (group EP). Figure 1 shows only those episodes in which both 

groups pointed, since the exploration task could not be quantified. The experiment 

concluded with the aftereffect phase, which consisted of three pointing episodes 

without feedback (to assess the persistence of adaptation), two pointing episodes 

with -60° rotated feedback (to refresh adaptation), and five tracking episodes with -

60° rotated feedback (to assess transfer from pointing to tracking). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Inset:  Scheme of experimental apparatus with display screen (S), mirror (M), and horizontal 

workspace (H). a  Tracking and pointing performance of subjects exposed to a visual rotation while 

performing the pointing task alone (group P, gray) or intermixed with the exploration task (group EP, 

black). Symbols indicate across-subject means, and error bars standard deviations. Abscissa labels 

indicate normal (n), absent (a), or 60° rotated (r) feedback. b  Tracking and pointing performance of 

subjects who correctly described the visual distortion (black) and those who didn’t (gray). Abscissa 

labels indicate episode numbers. 
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Before starting, subjects were instructed that the task will “become more difficult” 

during the experiment, but they will “get used to it”. They were not instructed about 

the nature of this difficulty, nor were they given any advice on how to overcome it. 

After completion of the experiment, they were asked to write down why, in their 

opinion, the task had become more difficult. Answers were deemed correct when 

subjects reported either a rotated visual feedback, or the need for counter-clockwise 

response corrections. Two subjects apparently misunderstood our question and their 

responses were therefore discarded. 

22 right-handed subjects (10 males, 12 females), aged 20 to 29, participated after 

signing a written informed consent statement. After discarding the abovementioned 

two subjects, group P and EP consisted of ten subjects each. None of them exhibited 

overt sensorimotor deficits besides corrected vision, and none had prior experience in 

sensorimotor research. The study was part of a research project pre-approved by the 

authors’ institutional Ethics Committee. 

 

2.4  Results 

Figure 1a depicts the tracking and pointing performance of group P and EP. Clearly 

from this presentation, the performance of both groups was very similar throughout 

all phases of the experiment. Under rotated feedback, pointing errors abruptly in-

creased and then gradually decreased again, as a sign of successful adaptation. When 

visual feedback was subsequently removed, pointing errors remained relatively low, 

thus indicating a partial persistence of adaptation. Tracking errors under rotated 

feedback after adaptation were not much larger than under normal feedback before 

adaptation, which suggests a successful transfer of knowledge to a new motor task. 

The similarity of both groups was confirmed statistically. Table 1 shows the outcome 

of analyses of variance (ANOVA) with the between factor Group and the within-

factor Episode, which yielded no significant effects of Group or group × episode on 

subjects’ pointing or tracking errors in the adaptation, persistence, or transfer phase. 

To confirm that exploration of the workspace was indeed more complete in the ex-

ploration than in the pointing task, we compared several response characteristics of 

group EP and P in episode 8 and 30 (i.e., in the first and last adaptation episode dur-

ing which group EP performed the exploration task). Mean movement amplitude in 
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episode 8 was 144.6 ± 33.1 mm for group EP and 117.7 ± 13.2 mm for group P, 

which was significantly different (t(12) = 2.39; p < 0.05). In episode 30, it was 134.6 

± 36.8 mm for group EP and 119.0 ± 5.8 mm for group P, which was no longer sig-

nificantly different (t(9) = 1.32; p > 0.05). The within subject standard deviation of 

movement amplitude in episode 8 was 41.4 ± 24.1 mm for group EP and 17.3 ± 11.9 

mm for group P, which was significantly different (t(13) = 2.83; p < 0.05). In episode 

30, it was 31.9 ± 20.3 mm for group EP and 5.9 ± 3.3 mm for group P, which was 

also significantly different (t(9) = 4.00; p < 0.01). The dispersion of movement start-

ing points
2
 in episode 8 was 13,231 ± 12,619 mm

2
 for group EP and 65 ± 38 mm

2
 for 

group P, which was significantly different (t(9) = 3.29; p < 0.01). In episode 30, it 

was 7,879 ± 9342 mm
2
 for group EP and 50 ± 35 mm

2
 for group P, which was again 

significantly different (t(9) = 2.65; p < 0.05). Thus summing up, starting points and 

movement amplitudes varied substantially more in the exploration than in the point-

ing task, which suggests that subjects visited a larger portion of the workspace in the 

former than in the latter task. 

  Group  Episode  Group × episode 

  
df F p  df F p  df F p 

Adaptation  
1,18 0.15 >0.05  3,57 41.57 <0.001  3,57 1.04 >0.05 

Persistence  
1,18 0.27 >0.05  2,36  4.78 <0.05  2,36 1.56 >0.05 

Transfer  
1,18 1.25 >0.05  3,50  2.81 >0.05  3,50 0.66 >0.05 

Tab. 1  Outcome of analyses of variance using the between-factor group and the within-factor epi-

sode, when applied to the tracking and pointing errors of the adaptation, persistence, and transfer 

phase. Statistical significance is highlighted in bold. 

Subjects’ verbal retrospective reports regarding task difficulty, and our classifica-

tions of those reports, are presented in Table 2. Thus, seven of the ten subjects from 

group P described the distortion correctly, as did seven of the ten subjects from group 

EP. We therefore have no evidence that one of the two adaptation regimes is more 

beneficial for declarative knowledge than the other.  

                                                 
2
 This characteristic was defined by calculating the standard deviation of starting point along the x and 

y axis, sx and sy, and then calculating the area of an ellipse with those standard deviations as half-

axes, i.e., π*sy*sy. 
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Figure 1b illustrates the tracking and pointing performance of our subjects when 

sorted by the presence or absence of declarative knowledge, rather than by group. 

Clearly, subjects with declarative knowledge exhibited a more pronounced adapta-

tion, a better persistence, but no better transfer than the remaining subjects. These 

observations are confirmed by an ANOVA with the between-factor knowledge and 

the within-factor episode shown in Table 3, as significant effects of knowledge for 

adaptation and retention, but not for transfer.  

 Subject Response Classification 

s1 Displaced 45° clockwise 

 

Correct  

s2 Rotated 40° to the left 

 

Correct 

s3 Displaced 45° to the right 

 

Correct 

s4 Always 45° counterclockwise 

 

Correct 

s5 Deflection of 45° 

 

Correct 

s6 Displaced 30° to the left 

 

Correct 

s7 Displacement about a certain angle (45° or more) 

 

Correct 

s8 Rotated about always the same angle 

 

Correct 

s9 Drifted to the left side 

 

Correct 

s10 Always slight flection 

 

Correct 

s11 Always had to point approximately 30° aside in a circle 

 

Correct 

s12 Cursor had strong angular momentum to the left 

 

Correct 

s13 Always changed about a certain angle (45°) 

 

Correct 

s14 Tracing in a different angle 

 

Correct 

s15 Cursor and movement of the hand do not correspond 

 

Incorrect  

s16 Diagonal = across, diagonal = straight up, vertical = diagonal,... 

 

Incorrect 

s17 Finger from right to left = cursor above right to down left, ... 

 

Incorrect 

s18 Straight movements with index finger no longer possible 

 

Incorrect 

s19 Cursor and movement of the hand do not correspond 

 

Incorrect 

s20 Cursor and movement of the hand do not correspond 

 

Incorrect 

Tab. 2  Subjects’ verbal reports, and their classification. The reports were translated from German to 

English for the purposes of this publication. 
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It is conceivable that subjects without declarative knowledge, who produced larger 

pointing errors during the adaptation and persistence phase, compensated for those 

errors by making larger corrections near the end of movement. To find out, we de-

termined the pointing error not only 100 ms after movement onset but also at move-

ment end, and used the difference between both as a measure of response corrections. 

The ANOVA in Table 4 yielded no significant effects of knowledge or knowledge × 

episode on response corrections; the effect of Episode reflects the decrease of correc-

tions from about 35° at adaptation onset to about 15° at adaptation end. We therefore 

found no evidence for the above view, that subjects without declarative knowledge 

made larger corrections. 

  Group  Episode  Knowledge×episode 

  df F p  df F p  df F p 

Adaptation  
1,18 5.42 <0.05  3,55 32.75 <0.001  3,55 1.89 >0.05 

Persistence  
1,18 4.74 <0.05  2,36  4.47 <0.05  2,36 0.25 >0.05 

Transfer  
1,18 1.43 >0.05  4,72  1.92 >0.05  4,72 0.61 >0.05 

Tab. 3  Outcome of analyses of variance using the between-factor declarative knowledge and the 

within-factor episode, when applied to the tracking and pointing errors of the adaptation, persistence, 

and transfer phase. Statistical significance is highlighted in bold. 

  Group  Episode  Knowledge×episode 

  df F p  df F p  df F p 

Adaptation  
1,18 2.00 >0.05  3,49 7.98 <0.001  3,49 1.45 >0.05 

Persistence  
1,18 0.00 >0.05  2,36  1.16 >0.05  2,36 0.15 >0.05 

Tab. 4  Outcome of analyses of variance using the between-factor declarative knowledge and the 

within-factor episode, when applied to the error corrections of the adaptation and persistence phase. 

Statistical significance is highlighted in bold. 

 

2.5  Discussion 

One purpose of our study was to determine whether sensorimotor adaptation is en-

hanced when subjects are not limited to a set of eight movements, but rather can free-
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freely explore the distorted workspace to any desirable detail. Since the transfer of 

adaptation to unpracticed locations is already perfect with eight targets (Krakauer et 

al. 2000), we didn’t expect a further improvement of unconstrained exploration, and 

therefore didn’t test for this type of transfer. Instead, we tested for the time-course of 

adaptive improvement, the persistence of adaptation when visual feedback is with-

held, and the transfer of adaptation from pointing to tracking movements. Our data 

provide no evidence for a benefit of unconstrained exploration on any of those phe-

nomena, which is in accordance with the view that practice with eight equal-

amplitude movements is already variable enough to support global adaptation. This 

outcome is relevant for the interpretation of earlier work. Most previous adaptation 

studies used an eight-target task similar to the present work, but some opted for dif-

ferent pointing regimes, in order to sample a larger portion of the workspace (Flana-

gan et al. 1999; Graydon et al. 2005). The present data support the view that all 

above studies dealt with the same adaptive mechanisms, in spite of their methodo-

logical differences. 

The second purpose of our study was to evaluate the role of declarative knowledge 

for adaptation. We found that subjects who correctly described the nature of our dis-

tortion also showed a more pronounced adaptive improvement and a stronger persis-

tence, but not an enhanced transfer of adaptation to a new motor task. This pattern of 

findings suggests that the benefits of declarative knowledge are short-lived and/or 

situation-specific, two characteristics previously attributed to the strategic control 

(Redding and Wallace 1996; McNay and Willingham 1998; Bock 2005): In short, it 

is thought that adaptive improvement is achieved by two processes, a recalibration of 

sensory-to-motor transformation rules, and strategic adjustments which include feed-

back-based corrections and various cognitive workarounds. We therefore conclude 

that subjects with declarative knowledge improved their adaptive progress by a more 

intensive use of strategic adjustments. Among the various strategies discussed in 

literature, feedback-based corrections can probably not explain our data, since cor-

rections were excluded by our analysis procedure (see Methods). Likewise, deliber-

ate pastpointing can be discounted since it is detrimental rather than beneficial for 

adaptation (Krakauer et al. 2000). More likely alternatives are the associative learn-

ing of stimulus-response pairs, anticipatory response adjustments for errors experi-
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enced on previous trials, cognitive updating of perceived feedback positions (Red-

ding 1996), as well as real or virtual changes of body posture (Redding et al. 2005). 

Summing up, our findings suggest that subjects with declarative knowledge about the 

distortion augmented their adaptive progress through strategic adjustments. How-

ever, the causal relationship between knowledge and strategies still needs to be ex-

plored: we believe that declarative knowledge invoked accordant strategies, but our 

data are also compatible with the view that the use of strategies invoked declarative 

knowledge. 
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3.1  Abstract 

Behavioral studies suggest that the adaptation of planar arm movements to rotated 

visual feedback is achieved by the interplay of a gradual process which slowly ro-

tates subjects' responses by up to +/-90°, and a discrete process which changes the 

responses by means of axis inversion. The processes for adaptation to left-right re-

versed visual feedback are far less well understood. To clarify this issue, 12 healthy 

subjects performed pointing movements to targets presented in eight different direc-

tions, before and during exposure to left-right reversed visual feedback. We quanti-

fied the direction of each response 150 ms after movement onset and analyzed the 

time-course of those directions throughout the adaptation phase, separately for dif-

ferent targets. For targets along the axis of inversion, we only found an increase of 

response variability, for targets perpendicular to that axis, we observed a discrete 

180° change of response direction, and for diagonal targets, we found a discrete 180° 

change followed by a gradual "backward" shift of 90°. The present findings confirm 

that sensorimotor adaptation is based on discrete and gradual processes, that both 

types of processes can occur concurrently, and suggests that those processes can con-

tribute to adaptation in a target-specific fashion. 
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3.2  Introduction 

The human sensorimotor system can adapt to a variety of visual distortions such as 

lateral shifts, magnifications, mirror-reversals, and rotations of the visual input. The 

latter type of distortion has been particularly well investigated. Adaptation to rota-

tions up to 90° is achieved by a continuous process which gradually changes sub-

jects’ responses up to the required angle of rotation; adaptation to larger angles there-

fore takes longer (Cunningham 1989; Imamizu and Shimojo 1995; Abeele and Bock 

2001a; Ferrel et al. 2001), but benefits from a pre-adaptation to smaller angles (Ab-

eele and Bock 2001b; Wigmore et al. 2002). In contrast, adaptation to a 180° rotation 

is quick and discrete (Cunningham 1989; Imamizu and Shimojo 1995; Abeele and 

Bock 2001a; Ferrel et al. 2001), as it is probably achieved at fairly low cost by an 

axis inversion (Cunningham 1989). Finally, adaptation to rotations between 90° and 

180° is achieved by a combination of both above processes, i.e., a quick 180° change 

followed by a gradual “backward” rotation towards the required angle (Bock et al. 

2003). 

Unlike adaptation to visual rotations, adaptation to reversed vision has been less well 

studied in the past. At a first glance, it might seem obvious that it is at least as fast as 

adaptation to 180° rotations, since it can be achieved by inverting just one rather than 

two axes. However, experimental evidence does not support such a view: adaptation 

to reversals is actually quite slow (Miyauchi et al. 2004; Caselli et al. 2006), with 

movement errors about as high as under 90° rotations (Cunningham 1989). Detailed 

analyses yielded that targets presented along the axis of reversal – which required no 

adaptive change – yielded higher errors than targets presented perpendicular to that 

axis (Cunningham and Pavel 1991), that the incidence of correctly aimed movements 

increased during adaptation from 60% only to 75%, and that incorrect movements 

were typically aimed as in novice subjects rather than in other directions (Caselli et 

al. 2006). These findings illustrate the complexity of adaptation to visual reversals, 

but they do not reveal the principles by which this adaptation is achieved. 

While adaptation to visual reversals seem to be as slow as that to 90° rotations, it is 

difficult to envisage that it acts gradually as well: an internal representation of space 

can gradually rotate from 0° through intermediate angles up to 90°, but how can it 

gradually invert one of its axes? Here we present evidence that adaptation to visual 
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reversals is achieved by a combination of gradual and discrete processes, much like 

those involved in adaptation to visual rotations. 

 

3.3  Methods 

The experimental apparatus is shown schematically in Figure 1A. Subjects pointed at 

mirror-viewed visual targets which appeared in a horizontal plane. The position of 

their index fingertip was registered by the Fastrak


 motion analysis system with a 

sampling frequency of 120 Hz and a resolution of 1 mm. The registered signal was 

used to display a cursor along with the targets, hence subjects received visual feed-

back about their finger position without actually seeing their arm. We instructed the 

subjects to point as accurately and quickly as possible from a central starting dot to 

peripheral targets and back again (Figure 1B). The targets were presented in random 

sequence, at eight possible positions along an imaginary circle of 100 mm radius; 

each stayed on for 700 ms, and was then replaced by the starting dot until the cursor 

returned to the centre. 

 

 

 

 

 

 

 

 

Fig. 1 A  Scheme of experimental apparatus with display screen (S), mirror (M), working plane (W), 

and Fastrak® sensor (F). B  Layout of targets and central starting dot. Arrows indicate the effect of 

left-right reversed feedback; e.g., when subjects move their finger towards the 45° target, they see it 

moving towards the 135° target. 

The experiment was subdivided into episodes of 30 s duration, separated by rest 

breaks of 5 s duration. First, subjects were familiarized with the experiment in two 

episodes under veridical visual feedback. Data collection then started with three 

baseline episodes, again under veridical feedback, followed by 40 adaptation epi-
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sodes under left-right reversed feedback. We quantified subjects' pointing perform-

ance as finger direction with respect to the target 150 ms after movement onset, i.e., 

before feedback-based corrections could become effective. While it is customary to 

summarize subjects’ performance as the mean direction and its standard deviation for 

a each episode, we decided instead to depict the distribution of directions for each 

episode, to emphasize the fact that many of those distributions were bimodal. Sepa-

rate distributions were derived for responses to targets at 90° and 270°, which re-

quired no adaptive change, to targets at 0° and 180°, which required a reversal of 

direction, and for the remaining, diagonal targets, which required a change of +90° or 

–90° (see Figure 2). 

Twelve healthy right-handed subjects (age 24.58 ± 4.38 years; 4 female, 8 male) par-

ticipated. None had previous experience in sensorimotor research. The authors’ local 

Ethics Committee had approved the procedure of the experiment, and all subjects 

gave written informed consent. 

 

3.4  Results 

Original registrations of finger paths produced by one subject at the onset of adapta-

tion are shown in Figure 2. Targets at 90° and 270° required no adaptive change, and 

accordingly, most finger paths are aimed directly at those targets; however, one re-

sponse is inadequately aimed in the opposite direction (Figure 2A). Targets at 0° and 

180° required a reversal of movement direction, and indeed, several early-adaptation 

responses already show reversals (Figure 2B). Diagonal targets required a +90° or -

90° response change, but the finger paths are actually aimed either towards or oppo-

site to the targets (Figure 2C). 

 

Fig. 2  Movement paths of one subject at the onset of adaptation to targets at 90° and 270° (A), 0° and 

180° (B), and all diagonal targets (C).  
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Figure 3 illustrates the distribution of all response directions from the same subject, 

in the different adaptation episodes. Figure 3A depicts responses to targets at 90° and 

270°, Figure 3B to those at 0° and 180°, and Figure 3C to the diagonal targets; to 

accommodate all diagonal targets in a single plot, we inverted the sign of responses 

to targets requiring a +90° rather than a -90° change. Already a look at these single-

case data suggests that the time-course of adaptation might differ between the three 

target groups depicted in Figure 3A-C, respectively. 

Fig. 3  Distribution of movement directions for the same subject as in Fig. 2. The 360° range of possi-

ble directions was subdivided into 30° bins centered about 0°. Bin width h was estimated with the rule 

of Freedman–Diaconis with 
3

)(2

n

xIQR
h

×
= , where IQR(x) is the interquartile range and n the 

number of movements within each episode. The frequency of movements (z-axis & grayscale) for 

each bin (y-axis) is shown separately for each adaptation episode (x-axis). As in Fig. 2, data are plot-

ted separately for targets at 90° and 270° (A), 0° and 180° (B), and diagonal targets (C).  

Figure 4 shows the distributions of response directions across all subjects. In contrast 

to Figure 3, we decided for a two-dimensional grayscale representation which might 

be less intuitive, but which prevents smaller ridges to "hide" behind larger ones. Ar-

rows were added in Figure 4 to indicate pointing directions which correspond to 

complete adaptation. 

As shown in Figure 4A, responses to targets at 90° and 270° remained centered 

around the target direction. Only a minority of responses early during adaptation 

were aimed opposite to the targets. Variability was larger during adaptation than dur-

ing baseline: the standard deviation of all baseline episodes (8.03°) differed signifi-

cantly from that of the first five adaptation episodes (40.87°): t(1,12) = -3.274; p < 

0.01. From Figure 4B, responses to targets at 0° and 180° were distinctly bimodal, 

with one peak aligned with the target direction and the other peak with the opposite 

direction, representing fully adapted behavior. The former peak became gradually 
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lower, and the latter became gradually higher during the adaptation phase, but their 

directional alignment remained steady. Figure 4C illustrates that responses to diago-

nal targets were bimodal as well. One peak was again aligned with target direction. 

The other peak was initially aligned with the opposite direction, but gradually shifted 

throughout the adaptation phase towards the value of -90° required for complete ad-

aptation. Again, the peak aligned with the target direction became gradually lower, 

while the other peak became gradually higher during the adaptation phase. 

Fig. 4  Distribution of movement directions for all subjects. Across-subject means were calculated in 

the same way as the individual-subject data in Fig. 3, and plotted as 2D graphs with grayscale coding 

of frequency. Bins representing full adaptation are marked by arrows. As in Fig. 2 and 3, graph A 

shows the results for targets at 90° and 270°, B for 0° and 180°, C for all diagonal targets; addition-

ally, BL shows baseline data. 

To compare the extent of adaptation for the different targets, we calculated the per-

centage of responses that were aimed within ±15°, around the direction of full adap-

tation during the last three adaptation episodes. This ±15° interval corresponds to the 

intervals of pointing directions we had estimated for the distributions of response 

directions (Figures 3 and 4). The mean percentage ± standard deviation across sub-

jects was 36.81% ± 29.76% for targets at 90° and 270°, 71.57% ± 30.08% for targets 

at 0° and 180°, and 27.36% ± 21.93% for diagonal targets. The difference between 
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target groups was significant in a one-way analysis of variance (F(2,33) = 8.591; p < 

0.001), with Fisher’s LSD post-hoc tests revealing that only the 0° and 180° targets 

differed from the other target groups. Thus, by the end of adaptation, the percentage 

of correctly aimed responses was smaller for targets at 90° and 270° which required 

no adaptive change, than for targets at 0° and 180° which did require adaptive 

change.   

Figure 5 illustrates the efficiency of adaptation across all targets which required an 

adaptive change (i.e., excluding targets at 90° and 270°). During the first adaptation 

episode, the majority of responses were aimed within ±15° around the target direc-

tion, and thus were not adapted; only few responses were aimed within ±15° around 

the direction representing full adaptation. During the last three adaptation episodes, 

this relationship was reversed. This observation was supported by an analysis of 

variance with the within-factors Episode (first, last three), and Response direction 

(naive, adapted), which yielded a significant interaction of Episode × Response di-

rection (F(1,11) = 12.679; p < 0.01). 

 

 

 

 

 

 

Fig. 5  Streaked bars indicate the frequency of unadapted response directions (bin centered around 0°), 

and white bars the frequency of fully adapted response directions (bin centered around +/-90° or 180°, 

depending on target). To the left are across-subject means from the first, and to the right those from 

the last three adaptation episodes. 

 

3.5  Discussion 

The aim of the present study was to evaluate the principles of adaptation to visual 

left-right reversal. Previous work has shown that adaptation to a 180° rotation can be 

achieved very fast, probably by inverting both spatial axes (Cunningham 1989; Bock 

et al. 2003). On might therefore expect that adaptation to a left-right reversal is at 

least equally fast, since only one axis needs to be inverted. However, previous au-
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thors reported that adaptation to this distortion is slow (Cunningham 1989; Miyauchi 

et al. 2004; Caselli et al. 2006), and our own data confirm this observation: after 20 

minutes, or about 480 trials, only 42% of responses were fully adapted, and 20% 

resisted any change. The inversion of a single axis therefore seems not to be a readily 

available adaptive process. In line with the findings of Cunningham and Pavel 

(1991), we also showed that movements along the axis of reflection produce higher 

errors than movements along the axis perpendicular to it. 

The main outcome of the present study is that adaptive changes took a different 

course for different targets. For targets on the axis of reversal, response direction 

became more variable but did not change systematically. For targets perpendicular to 

that axis, responses were aimed either at the target or opposite to it, with prevalence 

gradually shifting from the former to the latter. For targets on the diagonals, re-

sponses were aimed either at the target or in a direction which was initially opposite, 

and then gradually changed towards -90°; again, prevalence gradually shifted from 

the former to the latter. The findings for diagonal targets are quite reminiscent of our 

previous data on adaptation to large visual rotations: there as well, responses were 

initially aimed opposite to the targets and then gradually shifted until they became 

adequate for the imposed rotation (Bock et al. 2003). It therefore seems conceivable 

that the same interplay of a discrete 180° switch and a gradual change of direction 

may be invoked by both visual distortions. In this sense, our data confirm the exis-

tence of a discrete and a gradual adaptive process. Moreover, the present findings 

document for the first time that these processes can be activated simultaneously and 

in a target-specific fashion: both the discrete and the gradual process for some tar-

gets, only the discrete process for other targets, and none of them for yet other tar-

gets. 

The target-specific adaptive changes observed in the present study could be inter-

preted as evidence that adaptation is organized in multiple functional modules, each 

pertinent to a narrow range of response directions. Such a view is in accordance with 

the finding that adaptation to rotated vision can be direction-specific (Krakauer et al. 

2000; Woolley et al. 2007) just as it can be specific for an endeffector (Bock et al. 

2005), target colour (Wada et al. 2003; Mistry and Contreras-Vidal 2004; Osu et al. 

2004), or head orientation (Seidler et al. 2001). But it is in conflict with the observa-

tion that adaptive changes of the visuomotor gain imperatively generalize across di-
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rections (Krakauer et al., 2000; Bock, 1992) except when visual feedback is terminal 

(Heuer & Hegele, 2008; Hegele & Heuer, 2010). As further evidence against inde-

pendent, direction-specific modules, we observed several signs of interference be-

tween directions. First, response variability increased for targets at 90° and 270°, 

although these targets required no adaptive changes whatsoever. Second, the inci-

dence of responses directed opposite to targets at 0° and 180° developed slowly over 

time, and not abruptly as in experiments on adaptation to rotated visual feedback 

(Bock et al. 2003). Third, responses to the opposite direction, e.g., a 180° inversion, 

could be observed for all target directions. 

In conclusion, our data indicate that adaptation to reversed vision can be based on the 

same discrete and continuous processes as adaptation to rotated vision, and that those 

processes can operate simultaneously and in a target-specific fashion. Further work is 

needed to determine whether those processes change a global internal representation 

of space, or rather multiple direction-specific modules. 
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4.1  Abstract 

Sensorimotor adaptation to rotated visual feedback is thought to be achieved by di-

rectionally tuned modules. Here we scrutinize whether adaptation to reversed vision 

utilizes similar mechanisms. Specifically, we hypothesize that adaptive transfer to 

unpracticed target directions is determined by the superposition of neighboring mod-

ules. One group of subjects adapted to a left-right reversal of visual feedback, which 

requires a 180°, ±90°, or no change of response direction, depending on target posi-

tion. Two groups of control subjects adapted to a 180° and to a 90° rotation of visual 

feedback. We found that adaptation to a left-right reversal is less efficient than adap-

tation to rotations requiring the same adaptive change, and attribute this decrement to 

interference between neighboring modules. We further found that transfer to unprac-

ticed targets is well predicted by a simple Gaussian model. From this we conclude 

that adaptation to a left-right reversal emerges in a regional and interdependent fash-

ion, and can be modeled as overlapping Gaussian tuned processes. 
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4.2  Introduction 

Sensorimotor adaptation to rotated visual feedback is based on two distinct mecha-

nisms. Rotations up to 90° are compensated by a gradual rotation of an internal ref-

erence frame, from its original orientation through intermediate angles up to the re-

quired angle. Rotations of 180° are compensated by a discrete inversion of the x and 

y axes, and rotations between 90 and 180° by a combination of both, i.e., axes inver-

sion followed by gradual “backward” rotation (Bock et al. 2003). We have recently 

reported that adaptation to mirror-reversed visual feedback utilizes similar mecha-

nisms, and engages them in a target-specific fashion. Thus, responses to targets along 

the axis of reversal remain largely unchanged throughout the adaptation process, 

those to targets orthogonal to that axis are characterized by a discrete inversion, and 

those to targets in diagonal directions by a gradual rotation up to +90 or -90°, as ade-

quate (Werner and Bock 2010). These adaptive changes proceed concurrently, as if 

adaptation is based on multiple independent, target-specific modules. 

The notion of target-specific adaptive modules is supported by studies on the transfer 

of adaptation to unpracticed targets. Subjects exposed to magnified visual feedback 

showed good transfer to new target distances and directions (Bock 1992; Krakauer et 

al. 2000), which suggests that gain adaptation is a global process. In contrast, sub-

jects exposed to rotated feedback showed good transfer only to new distances (Kra-

kauer et al. 2000), while transfer to new directions gradually decreased with increas-

ing angular difference from the trained direction (Imamizu et al. 1995; Roby-Brami 

and Burnod 1995; Ghahramani et al. 1996; Pine et al. 1996; Krakauer et al. 2000; 

Wang and Sainburg 2005). This suggests that adaptation to rotated feedback is based 

on modules which are directionally tuned, possibly in a Gaussian manner (Ghahra-

mani et al. 1996; Tanaka et al. 2009). The existence of such directionally tuned mod-

ules could also explain that subjects can concurrently adapt to multiple visual rota-

tions when each is presented in a different workspace region (Imamizu et al. 1995; 

Roby-Brami and Burnod 1995; Ghahramani et al. 1996; Krakauer et al. 2000). 

If adaptation to mirror-reversals indeed utilizes similar mechanisms as adaptation to 

rotations, it should also be governed by directionally tuned modules. The present 

study was designed to scrutinize this prediction. Specifically, we hypothesized that 

the transfer to unpracticed target directions is determined by the superposition of 
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neighboring adapted modules. To find out, we compared experimental data of the 

transfer of adaptation to mirror-reversed vision with predictions of a simple Gaussian 

model. 

 

4.3  Methods 

Experimental Set-up 

We used the same experimental apparatus as in our preceding study (Werner and 

Bock 2010). In short, subjects performed center-out-and-back pointing movements to 

eight randomly lit targets without vision of their hand. Fingertip position was re-

corded with a sampling frequency of 120 Hz and a spatial resolution of 1mm, and 

displayed to the subjects as a cursor along with the targets.  

Participants and Procedure 

Forty-eight right-handed subjects participated (25.6 ± 2.8 years of age; 19 female, 29 

male). All were healthy with normal or corrected-to-normal vision, had no prior ex-

perience in sensorimotor research, and signed an informed consent statement before 

the experiment. The study was part of a research project pre-approved by the au-

thors’ local Ethics Committee. 

Subjects were asked to point at each target as accurately and quickly as possible dur-

ing episodes of 30 s duration, separated by 5 s rest breaks. In a given episode, targets 

were presented either in the eight cardinal and diagonal directions (target set A, 

white dots in Figure 1A), or in the eight interposed directions (target set B, gray dots 

in Figure 1A)
3
. Cursor feedback was veridical during the initial five episodes of the 

experiment (two familiarization and three baseline episodes), and was then distorted 

either by left-right reversal, by 90° rotation or by 180° rotation. Target sets and dis-

tortions varied between subject groups as per Figure 1B. Note from this presentation 

that subjects from group LRR adapted with target set A, and were tested with target 

set B once in the middle of adaptation (transfer phase I) and once at its end (transfer 

phase II). 

 

                                                 
3
 Due to technical reasons only whole-numbered target directions could be chosen. Therefore transfer 

targets were located at 22° instead of 22.5°, 68° instead of 67.5° and so on. 
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                                    112°                68° 
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                   158 °                                                              22° 

        180°                                                                                 0° 

                 
                   202°                                                             338° 

                  225°                                                             315° 

                                     248°                 292° 

                                    
                                                    270° 

A 

Fig. 1 A  Target display, showing the central starting dot, target set A (white dots) and target set B 

(gray dots). B  Order of distortions and target sets for each experimental group. 

Data Processing 

Subjects’ pointing direction was determined as the difference between hand and tar-

get direction 150 ms after response onset, that is, before feedback-based corrections 

became effective. Thus, complete adaptation to +90° rotated feedback would corre-

spond to a change of pointing direction from 0° to -90°. As in our previous study 

(Werner and Bock 2010), we calculated the percentage of well-adapted responses PA 

based on those responses which deviated by less than ±15° from complete adapta-

tion. This was done separately for each target direction, episode and group. The out-

come was submitted to analyses of variances (ANOVAs) with the within-factor Epi-

sode and the between-factor Group. Huynh-Feldt-corrections were applied when 

necessary to compensate for heterogeneity of variances. Significant effects were ex-

plored with Fisher LSD post-hoc tests. 

We further calculated the frequency distributions of response directions separately 

for each episode across all targets (group ROT-90 and ROT-180), or separately for 

targets requiring no adaptive change, those requiring 180° rotation, and those requir-

ing ±90° rotation (groups LRR and LRR-ctr). For targets requiring a +90° change, 

we inverted the sign of pointing directions before combining them with those to tar-

gets requiring a -90° change. A more detailed description of this procedure is pre-

sented elsewhere (Werner and Bock 2010)(Werner and Bock 2010). 

If transfer to an untrained target direction θ reflects the superposition of Gaussian 

tuning curves (see Introduction), the following should hold: 

  B # of  

episodes 

distortion 

 

target 

set 

LRR 23 left-right reversal A 

 2 left-right reversal B 

 23 left-right reversal A 

 2 left-right reversal B 

LRR-ctr 1 left-right reversal B 

ROT-90 40 90° rotation A 

ROT-180 40 180° rotation A 
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Here, σ is the tuning width and ia  is the peak value of the tuning curve for trained 

direction i*45°. We compared the values predicted by Eq. (1) with the data actually 

collected in the first episode of transfer I and II. 

 

4.4  Results 

Time course of adaptation 

The filled symbols in Figure 2 depict the percentage of well-adapted responses dur-

ing the first 40 adaptation episodes of group LRR, separately for targets requiring no 

change (Figure 2A), a 180° change (Figure 2B), and a 90° change (Figure 2C). These 

data are compared to the PA scores for the same targets under conditions when all 

targets were associated with the same distortion (open symbols). Two-way ANOVA 

yielded a significant effect of Episode for the scores in Figure 2B (F(23.32,512.99) = 

4.262; p < 0.001) as well as 2C (F(7.80,148.28) = 17.385; p < 0.001); the effects of 

this 

 

 

 

 

 

 

 

 

 

Fig. 2  Mean PA ± standard errors across subjects of the first 40 episodes in each group, comparing 

responses to the same targets requiring the same adaptive change under different experimental condi-

tions. A  Responses to 90° and 270° targets during adaptation and during the baseline of LRR. B  

Responses to 0° and 180° targets during adaptation of LRR and ROT-180. C  Responses to diagonal 

targets during adaptation of LRR and ROT-90. 
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Group and Episode × Group were not significant for either data set. It was not possi-

ble to apply two-way ANOVA to the scores in Figure 2A, since the comparison data 

consist of three episodes only (i.e., baseline episodes of group LRR). We therefore 

took another approach: for each subject, we calculated the difference between each 

adaptation episode and the mean of the three comparison episodes, and submitted the 

outcome to a one-way ANOVA with the factor Episode. The constant term was sig-

nificant (F(1,11) = 50.390; p < 0.001), indicating that the percentage of well-adapted 

responses was reliably lower in the adaptation than in the comparison data. 

Fig. 3  Frequency distribution of the same data as in Fig. 2 in a grayscale plot. The 360° range of 

possible directions was subdivided into 30° bins centered about 0°. Estimation of bin width h was 

implemented with the Freedman-Diaconis rule with 
3

)(2

n

xIQR
h

×
= , where n is the number of 

movements within each episode and IQR(x) the interquartile range. The across subject means of the 

frequency of movements (grayscale) for each bin (y-axis) is shown separately for each adaptation 

episode (x-axis). 

Figure 3 illustrates the actual distributions of the response directions summarized in 

Figure 2. According to Figure 3A, the difference between adaptation and comparison 

scores observed in Figure 2A was due to higher response variability rather than to a 

systematic bias, and to a few responses early during adaptation which were aimed 

opposite to the targets. Figure 3B confirms that adaptation to a 180° rotation is 

achieved by gradually increasing the incidence of adapted responses at the expense 

of non-adapted responses rather than by a gradual change of response direction 
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(Bock et al. 2003), and illustrates that this increase is more pronounced in group 

ROT-180 than in group LRR, where naïve responses still appeared at the end of ad-

aptation. Finally, Figure 3C shows that adaptation to a 90° rotation was achieved by 

a gradual change in group ROT-90, but by a maladaptive switch of 180° followed by 

a gradual “backward” change towards -90° in group LRR; some naïve responses 

were retained in the latter group even by the end of the adaptation phase. Thus sum-

ming up, the distribution of response directions throughout adaptation of group LRR 

differed from that of comparison data, and this difference was observed for all target 

directions. 

This observation was confirmed by an exemplary analysis of the 20th adaptation 

episode. Figure 4 shows the distributions of response directions in group LRR and in 

the comparison data, again separately for targets requiring no change (Figure 4A), a 

180° rotation (Figure 4B), and a 90° rotation (Figure 4C). An ANOVA with the 

within-factor Direction interval and the between-factor Group was applied to inter-

vals with non-zero scores, and yielded a significant Interaction for the data in Figure 

4A (F(2.20,48.39) = 51.945; p < 0.001), 4B (F(1.30,28.54) = 59.174; p < 0.05) and 

4C (F(5.31,116.87) = 4.294; p < 0.01). 

Fig. 4  Mean frequency distribution of response directions ± standard errors across subjects in episode 

20 for the same targets and conditions as in Fig. 2. Intervals of pointing directions that were used for 

an ANOVA are highlighted in gray. 
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Transfer to untrained target directions 

Figure 5 compares the PA scores at the onset of the first and second transfer phase of 

group LRR with those at the onset of adaptation in group LRR-ctr, collapsed across 

target directions. Note that during those episodes, both groups pointed at target set B 

under left-right reversed vision, but group LRR-ctr was naïve while group LRR was 

pre-adapted with target set A. The illustration shows that PA was larger in LRR than 

in LRR-ctr during the first transfer episode, and even more so during the second 

transfer episode. Accordingly, one-way ANOVA with the within-factor transfer 

Phase (I, II), applied to the differences between each LRR subjects’ scores and the 

mean LRR-ctr score, yielded a significant constant (F(1,11) = 11.775; p < 0.01) and 

a significant effect of Phase (F(1,11) = 10.301; p < 0.01). Thus, the observed differ-

ence between groups and between transfer phases could be confirmed statistically. 

Fig. 5  Mean PA ± standard errors across subjects for the first adaptation episode of LRR-ctr, as well 

as for the first transfer episode and the preceding adaptation episode of LRR. 

Figure 5 additionally shows PA during the two adaptation episodes that directly pre-

ceded the transfer episodes. Two-way ANOVA with the within-factors transfer Phase 

(I, II) and Episode (pretransfer, transfer) yielded significant effects of Phase (F(1,11) 

= 17.721; p < 0.01) and Episode (F(1,11) = 15.147; p < 0.01), confirming that the 

magnitude of transfer was less than complete. Calculated as  

etransfer
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Figure 6A shows the PA of the first episode of the second transfer phase, separately 

for each of the eight targets from set B. Also shown are the predictions of a Gaussian 

model (cg. Eq. (1)): the light gray curve represents the tuning width of σ = 23° (Ta-

naka et al. 2009), the dark gray curve the optimal constant width of σ = 16° and the 

black curve a set of rotation-dependent widths (see Appendix). Figure 6B illustrates 

the goodness-of-fit for all three model versions, as well as for a linear rather than 

Gaussian model which we added for comparison purposes. Figure 6C and D show 

the corresponding results for the first episode of the first transfer phase. 

One-way ANOVA of fitting errors from the second transfer phase, with the between-

factor Model version (linear/ σ = 23°/ σ = 16°/ variable σ) yielded a significant effect 

of Model (F(3,28) = 7.57; p < 0.001). Post-hoc decomposition revealed significant 

differences between linear and σ = 16° (p < 0.01), linear and variable σ (p < 0.001), 

but not between linear and σ = 23° (p > 0.05). For fitting errors from the first transfer 

phase, the effect of Model just escaped statistical significance (F(3,28) = 2.73; p = 

0.063). 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Mean PA of the first episode in transfer phase II (A) and I (C) for each target direction (white 

circles), and the corresponding linear predictions (black diamonds). Predictions of the Gaussian model 

are shown for a tuning width of σ = 23° (light gray line and crosses), σ = 16° (dark gray line and 

crosses) and for varying σ (black line and crosses). Root mean square errors between experimental 

data and predictions are shown for transfer II (B) and transfer I (D). 
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4.5  Discussion 

The present study scrutinized whether adaptation to left-right reversed vision could 

be based on similar, directionally tuned processes as adaptation to visual rotations. 

We confirmed that adaptation to a left-right reversal is achieved by concurrent, tar-

get-specific processes of the same type as previously described with visual rotations 

(Werner and Bock 2010). We further found that adaptation to a left-right reversal is 

less efficient than in control conditions which required the same adaptive change for 

all targets. This decrement could indicate that the tuning curves of neighboring tar-

gets overlap, or alternatively, that the neighboring processes mutually interfere. 

We observed a transfer of adaptation from trained target set A to untrained target set 

B, with transfer magnitude increasing during the time-course of adaptation. At a first 

glance, this observation seems to replicate earlier findings about successful transfer 

(Imamizu et al. 1995; Roby-Brami and Burnod 1995; Ghahramani et al. 1996; Kra-

kauer et al. 2000); however, the situation in the present study is more complex. 

Whereas previous work required the same transformation to be used with new tar-

gets, our experiment called for a distinctly different, not yet practiced transformation. 

For example, group LRR learned a 180° rotation for the target at 0° and a -90° rota-

tion for the target at 45°, and then had to produce the completely new rotation of        

-158° for the transfer target at 22°. Our modeling approach suggests that this new 

transformation was obtained through superposition of the neighboring trained tuning 

curves. 

Previous work argued that training with eight evenly distributed targets is sufficient 

to establish generalized adaptation across all directions. Thus, one study reported 

100% transfer to interposed targets after training with eight targets (Krakauer et al. 

2000), and another study found adaptation not to improve with more than eight tar-

gets (Werner and Bock 2007). However, these data were yielded with rotated visual 

feedback, i.e., a distortion which required the same adaptive modification for all tar-

gets; in such a situation, it is difficult to distinguish between transfer due to generali-

zation and transfer due to superposition of neighboring adapted modules. The present 

study uses a distortion which requires different adaptive modifications for different 

targets, and documents that adaptation did not generalize: transfer reached only about 
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60%, and could be quantitatively predicted as superposition of Gaussian tuned adap-

tive processes (Ghahramani et al. 1996; Tanaka et al. 2009).  

The tuning width suggested by our fitting procedure may be specific for left-right 

reversals, since different tuning widths have been reported for force fields (Thor-

oughman and Shadmehr 2000; Donchin et al. 2003), grip force learning (Witney and 

Wolpert 2003) and different visual distortions (Ghahramani et al. 1996; Tanaka et al. 

2009). Our results even predict tuning widths to depend on the size of rotation angle, 

since the best fit of our data was achieved when σ was allowed to vary between tar-

gets requiring 0°, 90°, and 180° rotation. The possible relationships between direc-

tionally tuned adaptive modules and similarly tuned neurons in posterior parietal 

cortex (Andersen et al. 1985) should be explored in future work.  

In conclusion, the present study shows that adaptation to different directions emerges 

in a regional and interdependent fashion, and can be modeled as overlapping Gaus-

sian tuned processes. 

 

4.6  Appendix 

To solve the Gaussian sum function in Eq. (1), we chose i to pass through 16 direc-

tions, i.e., from –180° to 495°, such as to accommodate the circular structure of the 

target array, and created the non-linear system of equations: 
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Here, ia  equals the mean PA of the three adaptation episodes preceding the second 

transfer phase at the direction i*45°. Solving this system of equations for σ = 23° 

(Tanaka et al. 2009) yielded the light gray fit in Figure 5A. 
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Next, the above system of equations was solved for tuning widths from σ = 1° to 25° 

in 1° increments; the goodness of fit was best for σ = 16°, which corresponds to the 

dark gray curve in Figure 5A. The same procedure was then repeated while allowing 

σ to vary between targets requiring 0°, 90°, and 180° rotation, respectively. Good-

ness of fit was best with σ ≤  3° for targets requiring no change, σ = 16° for those 

requiring a 180° rotation, and σ = 18° for those requiring a 90° rotation. 

The linear fit was computed by a linear interpolation between PA of the trained target 

directions: 
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where i*45° is the direction of the trained targets and ia  equals the mean PA of the 

last three adaptation episodes preceding the second transfer phase at the direction 

i*45°. 

For validation of our modeling approach, we calculated the model predictions for the 

first transfer phase as well, using the same σ values as for the second transfer phase 

(Figure 5C). 
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5.1  Abstract 

Clinical and neuro-imaging studies provide converging evidence that the cerebellum 

plays an important role for sensorimotor adaptation by participating in the adaptive 

process per se, and/or by evaluating motor performance errors as a prerequisite for 

adaptation. Recent experimental evidence suggests that error signals pertinent to ad-

aptation are related to sensory prediction rather than to online corrections (Tseng et 

al. 2007). To further elucidate the role of the cerebellum, the present study uses a 

multiple regression approach to separate out three independent determinants of adap-

tive success. Seventeen patients with cerebellar atrophy but without extracerebellar 

lesions and 17 healthy, sex- and age-matched controls participated. Both subject 

groups performed center-out pointing movements before, during, and after exposure 

to 60° rotated visual feedback. From the registered data, we quantified four indica-

tors of adaptive success (adaptive improvement, retention without feedback, inter-

manual transfer, and de-adaptation under normal feedback), as well as five measures 

of motor performance (reaction time, peak velocity, movement time, response vari-

ability, and ability for online error corrections). The variance of each adaptation indi-

cator was then partitioned into three components, one related to subject group but not 

to motor performance, a second related to group and motor performance, and a third 

related to motor performance but not to group. In accordance with previous work, 

adaptation and motor performance were degraded in patients. The deficit was similar 

in magnitude for all four adaptation indicators, which suggests that adaptive recali-

bration rather than strategic control were affected in our patients. No adaptation indi-

cator shared statistically significant variance with group alone; we therefore found no 

evidence for cerebellar circuitry dedicated to adaptation but not motor performance. 

Three indicators shared significant variance jointly with group and motor perform-

ance; this suggests that the cerebellar contribution to motor performance is related to 

adaptive success. All four indicators shared significant variance with motor perform-

ance alone; this indicates that extracerebellar contributions to motor performance are 

also related to adaptive success. In conclusion, our data support the view that neural 

structures inside and outside the cerebellum are processing motor performance-

related signals as a prerequisite for adaptation, but provide no evidence for a cerebel-

lar structure related exclusively to adaptation. 

 



Fourth study 

 

 61 

5.2  Introduction 

Since the pioneering theoretical work of Albus and Marr (Albus 1971; Marr 1969), 

the cerebellum has been considered a crucial brain structure for motor learning. In-

deed, experimental evidence supports its contribution to the conditioning (Gerwig et 

al. 2003; Timmann et al. 2000; Woodruff-Pak 1997), habituation (Maschke et al. 

2000), and scaling (Bloedel and Bracha 1997) of various reflexes. The cerebellum 

has also been implicated in a more complex form of motor learning, namely, sen-

sorimotor adaptation to visual and mechanical distortions. This view is supported by 

clinical studies, which found that adaptation is often reduced or abolished in patients 

with cerebellar disease (Deuschl et al. 1996; Diedrichsen et al. 2005; Gauthier et al. 

1979; Martin et al. 1996; Maschke et al. 2004; Tseng et al. 2007; Weiner et al. 1983). 

Further support comes from functional neuro-imaging studies, which observed an 

increase of cerebellar activity during an adaptation task (e.g., Flament et al. 1996; 

Graydon et al. 2005; Imamizu et al. 2000; Krakauer et al. 2003; Krebs et al. 1998; 

Lang et al. 1988). 

A long-standing debate in literature focuses on the specific role played by the cere-

bellum during adaptation. According to one position, this brain structure is involved 

in the adaptive process per se, by storing an internal model of body and surrounds, 

which can be adaptively modified to compensate for imposed external distortions. 

According to the alternative position, the cerebellum monitors and controls the exe-

cution of movements, and thus provides performance-related signals as a crucial pre-

requisite for adaptation. In support for the first view, cerebellar patients show adapta-

tion deficits even when executing ballistic responses, which are too fast for online 

error monitoring (Deuschl et al. 1996; Martin et al. 1996; Maschke et al. 2004; Tseng 

et al. 2007). In support for the second view, cerebellar activation in healthy subjects 

is more closely associated with performance errors than with adaptive progress (Fla-

ment et al. 1996). Another study favors a compromise between both above positions: 

adaptation was associated with widely distributed cerebellar activation which gradu-

ally decreased with practice, but also with focused activation near the posterior supe-

rior fissure which didn't decrease with practice, and which persisted even after equat-

ing for performance errors (Imamizu et al. 2000). The authors concluded that the 

distributed activation might reflect performance-related processes, while the focused 

activation might reflect the internal model. 
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A recent study (Tseng et al. 2007) compared adaptation under two conditions: when 

subjects executed ballistic movements which didn't allow online error corrections, 

and when they performed slower movements which did allow such corrections. They 

found no difference between conditions in healthy subjects, which indicates that ad-

aptation is not driven by online response corrections, but rather by the mismatch be-

tween intended and perceived response, called "sensory prediction error". They also 

found no difference between conditions in cerebellar patients, which suggests that 

patients' adaptation deficits cannot be explained by impaired online corrections. This 

outcome doesn't distinguish between the above two positions, but it stipulates that 

performance-related signals provided by the cerebellum for adaptation would include 

sensory predictions rather than online corrections. 

To further elucidate the role of the cerebellum, the present study uses a multiple re-

gression approach to separate out three components of adaptive success: one related 

to cerebellar integrity but not to motor performance, the second related jointly to 

cerebellar integrity and motor control performance, and the third to motor perform-

ance but not cerebellar integrity. A significant contribution of the first component 

would support the existence of cerebellar circuitry dedicated to adaptive processing 

but not to motor performance. A significant contribution of the second component 

would reflect cerebellar mechanisms involved in the monitoring and control of 

movements - including sensory prediction, while a significant contribution of the 

third component would support the role of mechanisms for motor control which are 

spared in cerebellar degeneration. 

 

5.3  Methods 

Subjects 

Seventeen patients and 17 control subjects participated after providing written in-

formed consent. Both groups were matched in age (patients: 55.29 ± 10.34 years, 

control: 54.59 ± 8.57 years) and gender (8 females and 9 males each). All partici-

pants were right-handed, and took no medicine affecting the central nervous system. 

All control subjects were in good health, and had no history of neurological disease. 

Patients presented with forms of cerebellar cortical degeneration, that is, sporadic 

adult onset ataxia (SAOA), spinocerebellar ataxia type 6 (SCA6) and genetically 
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undetermined autosomal dominant cerebellar ataxia type III (ADCA III). Magnetic 

resonance imaging (MRI) revealed cerebellar atrophy with no extracerebellar lesions 

in all patients. Clinical examination showed a pure cerebellar syndrome in the major-

ity of cases, with mild accompanying pallhypesthesia and/or hyperreflexia of the 

lower limbs in seven patients. Each patient’s diagnosis, severity of ataxia, and extent 

of cerebellar atrophy are provided in Table 1. On the average, cerebellar volume was  

 

Patient Age Sex Diagnosis Volume Ataxia 

     Total Upper-limb 

HS 66 M SAOA 6.5* 20/56 7/24 

FS 59 F SAOA 7.2* 15/56 5/24 

MI 66 F SAOA 8.0 18/56 7/24 

EE 45 F SAOA 6.7* 19/56 8/24 

US 39 F SAOA 5.1* 23/56 10/24 

KT 42 M ADCAIII 6.4* 16/56 5/24 

DB 48 M SAOA 6.6* 19/56 5/24 

HG 65 M SCA 6 7.2* 24/56 10/24 

HM 67 M SAOA 7.7 5/56 2/24 (left only) 

DS 49 M SCA 6 7.9 5/56 2/24 

PK 65 M ADCAIII 8.0 14/56 6/24 

PF 47 M SAOA 6.3* 14/56 5/24 

CW 42 F ADCAIII 4.7* 7/56 5/24 

RB 53 F SAOA 8.2 12/56 4/24 

WA 56 F SCA6 7.6 18/56 8/24 

FR 61 F ADCAIII 9.0 0/56 0/24 

KF 70 M SCA 6 6.8* 13/56 3/24 

Tab. 1  Patients' characteristics: Age, sex (F-female; M-male), diagnose (ADAC III - autosomal 

dominant cerebellar ataxia type III; SAOA - sporadic adult onset ataxia; SCA6 - spinocerebellar ataxia 

type 6), cerebellar volume as percent of intracranial volume (asterisks mark values less than mean 

minus standard deviation of healthy individuals), and total as well as upper-limb ataxia scores from 

SARA (Schmitz-Hubsch et al. 2006a). Note that subscores of upper-limb ataxia of the right and left 

arm were summed up, and no means were taken as in the original publication. 
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7.1 ± 1.5% of total intracranial volume in female, and 7.1 ± 0.7% in male patients; 

the corresponding values for healthy individuals are 8.2 ± 0.7% in females and 8.0 ± 

0.7% in males (Dimitrova et al. 2006). The cerebellar volume of individual patients 

correlated inversely with their severity of ataxia (r = -0.67, p < 0.05). The experimen-

tal protocol was pre-approved by the authors’ local Ethics Committee. 

Procedure 

Seated subjects were instructed to point quickly and accurately at visual targets. As 

shown schematically in Figure 1a, they watched a computer screen (S) through a 

mirror (M), such that the virtual image of the screen coincided with the horizontal 

surface of a digitizing tablet (T). A starting dot appeared for 0.5 to 3.0 s in the center 

of the virtual display, and was then replaced by one of eight possible target dots, lo-

cated 45° apart along an imaginary circle of 10 cm radius about the center. 2 s later 

the target was replaced by the starting dot, irrespective of how accurately the subjects 

had pointed. The starting dot remained on for 0.5 to 3.0 s, then the next target ap-

peared, etc. Subjects held a digitizing pen in their hand, and pointed at each target 

and back by moving the pen across the digitizing tablet. They were unable to see 

their arm, due to the mirror and surrounding shrouds; however, pen position was reg-

istered with a resolution of 0.3 mm and 60 Hz, and was displayed on the screen as a 

cursor to provide visual feedback about instantaneous hand position. Thus, the sub-

jects’ task was essentially to move the cursor towards each target and back. 

The experiment was subdivided into episodes of 30 s duration, or about 6-12 target 

presentations, separated by rest breaks of about 4 s. Depending on the particular epi-

sode, subjects used either their right or their left hand for pointing, and visual feed-

back about hand position was either veridical or rotated 60° clockwise about the 

starting dot. The experiment began with one familiarization episode, in which sub-

jects pointed with their right hand under veridical visual feedback. Next came the 

baseline phase, with one episode using the left, and then three episodes using the 

right hand, again under veridical feedback. The subsequent adaptation phase con-

sisted of 20 episodes with the right hand, in which visual feedback was rotated by -

60° to induce adaptation. Subjects returned one day or one week later
4
 for the reten-

                                                 
4
 The patients also took part in another study where different pause lengths were part of the test de-

sign. We did not anticipate an effect of pause length in our study, since retention of the adapted state 

remains nearly complete even after a 1-month pause (Bock et al. 2001). 
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tion phase of five episodes, using again the right hand under rotated feedback. Next 

came the intermanual transfer phase of two episodes, using the left hand under ro-

tated feedback, followed by a single refresh episode, using the right hand under ro-

tated feedback. Finally came the de-adaptation phase of five episodes, using the right 

hand under veridical feedback. The total testing time including instructions was 

about 20 minutes on the first, and about 10 minutes on the second day. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  a Scheme of experimental apparatus with display screen (S), mirror (M), and digitizing tablet 

(T). b Angles used for calculating the online correction ability (CA): White and grey dots represent 

starting point and target, the black line shows a sample movement path, α is the initial pointing error 

(150ms after movement onset), β the final error, and (α-β) is the correction angle. CA was calculated 

as the coefficient of determination between the correction angle and α. c-e Sample cursor paths to-

wards three of the eight possible targets in a patient with diffuse cerebellar atrophy, registered during 

the baseline phase (c), the beginning of the adaptation phase (d), and the end of the adaptation phase 

(e). f-h corresponding sample movement paths from a healthy control subject. 

Data analysis 

To quantify the time-course of adaptive improvement, we determined the initial er-

ror of each response as the angular difference between cursor and target direction 

150 ms after response onset, i.e., before feedback-based corrections could become 

effective. Response onset was defined as the first sample after movement speed ex-

ceeded 32mm/s; response end was determined accordingly. The mean initial errors of 

each subject and episode were submitted to an analysis of variance (ANOVAs) with 

the between-factor Group (patient, control) and the within-factor Episode; Huynh-
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Feldt-adjustments to the degrees of freedom were applied when necessary to com-

pensate for heterogeneity of variances. 

For further data reduction, we calculated each subject's adaptive success as adaptive 

improvement AI, adaptive retention AR, adaptive transfer AT, and de-adaptation 

DA:  

AI [°] = 60 - B + A,           (1) 

AR [°] = 60 - B + R,            (2) 

AT [°] = 60 - B + T,           (3) 

DA [°] = D - B,           (4) 

where B and A are the mean initial error of the last three baseline and the last three 

adaptation episodes, respectively, and R, T, and D are the initial errors of the first 

retention, transfer, and de-adaptation episode, respectively. 

We further determined several measures of each subject's motor performance. To 

quantify the speed of responding, we calculated the means of reaction time RT, peak 

velocity PV, and movement time MT during the adaptation phase. To quantify the 

consistency of the initial, ballistic portion of responses, we calculated response vari-

ability RV as the standard deviation of initial errors about their respective mean. This 

measure was calculated only from the last three baseline episodes, to ensure that it is 

not contaminated by variability related to adaptive change.  

To quantify the ability for online error corrections, we calculated the final error as 

the angular difference between cursor and target direction at the end of each move-

ment, and defined the difference between initial and final errors as correction angle 

(a - b in Figure 1b). Subjects with good correction ability should produce large cor-

rection angles when initial errors are high, and small correction angles when initial 

errors are low; in contrast, subjects with poor correction ability should produce cor-

rection angles, which are not closely related to initial errors. We therefore quantified 

each subject’s correction ability CA as the coefficient of determination between cor-

rection angles and initial errors. To obtain robust values, we calculated CA from data 

of the adaptation phase, where initial errors were large; however, we excluded the 

very first adaptation episode, since some movements in that episode looked quite 

erratic. We considered it justifiable to determine CA, even though online corrections 



Fourth study 

 

 67 

do not appear to affect adaptive success (Tseng et al. 2007), since CA could arguably 

reflect the processing of prediction errors as well (see “Introduction” and “Discus-

sion”, Chapters 5.2 and 5.5). 

The relationship between adaptive success, subject group, and motor performance 

was scrutinized with a multiple linear regression approach. To this end the total vari-

ance of each adaptation indicator (AI, AR, AT, DA) was partitioned into several 

components as shown in Figure 2. The variance shared between the adaptation indi-

cator (A) and the group (G) equals the coefficient of determination between A and G, 

R
2
(G), represented in Figure 2 by the common area VarG + VarJ. Furthermore, the 

variance shared between  A and the performance measures CA, RV, RT, PV, MT 

equals the multiple coefficient of determination R
2
(P), reflected in Figure 2 by the 

common  area VarJ + VarP. Likewise, the variance shared between A, G, and P corre-

sponds to the multiple coefficient of determination R
2
(PG), represented in Figure 2 

as VarG + VarJ + VarP. A detailed explanation of the partitioning of variances can be 

found in Bock and Girgenrath (2006). 

 

 

 

 

 

 

Fig. 2  The concept of common and unique variances. Circle A represents the variance of an adapta-

tion indicator: AI, AR, AT, or DA respectively. Circle G pictures the variance of Group and circle P 

the shared variance of the performance measures (CA, RV, RT, PV, and MT). The overlapping areas 

indicate the variance of A shared with G only (VarG), with P only (VarP), and with G and P jointly 

(VarJ). 

Consequently, the variance of A can be partitioned into a component VarG shared 

with group but not with motor performance, a component VarJ shared jointly with 

group and motor performance, and a component VarP shared with motor performance 

alone: 

 VarG = R
2

PG - R
2

P, VarJ = R
2

G + R
2

P - R
2

PG, VarP = R
2

PG - R
2

G,            (5) 

If e.g. R
2

PG - R
2

P is significant as analyzed by the significance test of the Pearson 

product-moment correlation, then VarG makes a decisive contribution to A. 
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5.4  Results 

Figure 1 shows original registrations of cursor paths produced by a patient (c-e), and 

by a control subject (f-h). Paths registered during the baseline phase (c, f) are straight 

and well aimed. At the onset of adaptation (d, g), paths are misdirected by about 60°, 

as expected due to the imposed visual rotation; the paths curve back towards the tar-

gets later on in the control subject but not in the patient, suggesting that online error 

corrections are more pronounced in the control subject. Near the end of adaptation (e, 

h), the paths become again straighter and more accurate, particularly in the control 

subject. 

The above observations are confirmed and expanded by Figure 3. The initial error 

across subjects from the control and the patient group was near zero during the base-

line phase, became abruptly negative at the onset of adaptation, and then gradually 

returned towards zero, more so in controls than in patients. The group difference at-

tained at the end of the adaptation phase persisted throughout the subsequent reten-

tion, transfer, and refresh phases, and then gradually decreased during the de-

adaptation phase. These observations were confirmed statistically. An ANOVA of 

the adaptation phase yielded significant effects of Group (F(1,31) = 18.78; p < 

0.001), Episode (F(17,526) = 45.19; p < 0.001) and Group × Episode (F(17,526) = 

3.71; p < 0.001). An ANOVA of episodes 22 to 33 (i.e., late adaptation to early de-
adkhjhjkhkkhha 

Fig. 3  Initial pointing error for all experimental episodes in patients (gray) and controls (white); left 

indicates episodes in which subjects used their left arm for pointing. Symbols represent across-subject 

means, and bars the pertinent standard deviations. 
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adaptation) yielded significant effects for Group (F(1,32) = 22.78; p < 0.001) and 

Episode (F(11,352) = 314.13; p < 0.001) but not for their interaction. Finally, an 

ANOVA of the de-adaptation phase yielded a significant effect of Group (F(1,32) = 

5.22; p < 0.05), Episode (F(3,86) = 111.90; p < 0.001) and their interaction (F(3,86) 

= 15.95; p < 0.001). 

Even though Bock et al. found the adapted state to remain nearly complete after a 

one-month pause (2001), one might argue that this is not the case for patients. How-

ever additional ANOVAs with the between-factors Group (patient, control) and 

Pause length (day, week) yielded no significant effects for Pause length (Retention: 

F(1,30) = 0.00; p > 0.05, Transfer: F(1,30) = 0.07; p > 0.05, De-adaptation: F(1,30) 

= 0.49; p > 0.05), thus discarding the above argument.  

 

 mean ± sd correlations with 

 controls patients 

 

t(32) patients`      

ataxia 

patients` 

volume 

AI   39.2 ± 5.4   28.1 ± 9.2 -4.3*** -0.674*  0.348* 

AR   26.3 ± 7.7   18.2 ± 10.5 -2.5* -0.443*  0.166 

AT   17.7 ± 11.4     9.7 ± 10.8 -2.1* -0.303  0.123 

DA   35.1 ± 8.2   22.2 ± 10.0 -4.1*** -0.534*  0.306 

CA     0.9 ± 0.1     0.7 ± 0.3 -3.2** -0.515*  0.077 

RV   11.1 ± 8.0   14.6 ± 11.6  1.0  0.112  0.080 

RT     0.4 ± 0.1     0.5 ± 0.1  3.3**  0.556* -0.069 

PV 246.8 ± 64.6 202.6 ± 77.6 -1.8 -0.237  0.163 

MT     1.1 ± 0.2     1.4 ± 0.4 2.2*  0.355* -0.211 

Tab. 2  Indices of adaptation (top part) and measures of movement performance (bottom part) in 

healthy controls and in cerebellar patients. The third data column presents the outcome of group com-

parisons with t-tests, and the last two columns the correlations of patients' findings with ataxia scores 

and cerebellar volume. Symbols ***, **, and * indicate p<0.001, p<0.01, and p<0.05, respectively, 

and the absence of a symbol indicates p>0.05. 

The top part of Table 2 summarizes our findings regarding the four adaptation indi-

cators. All indicators were significantly lower in patients than in control subjects, 

thus confirming the existence of adaptation deficits in cerebellar disease (see “Intro-
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duction”, Chapter 5.2). Within the patient group, three indicators correlated signifi-

cantly with the ataxia score, and one with cerebellar volume. The bottom part of Ta-

ble 2 summarizes our findings regarding the five motor performance measures. Pa-

tients show significantly poorer performance than controls on three of those meas-

ures, and the same three measures were also significantly correlated with patients' 

ataxia scores. The correlation with cerebellar volume was not significant for any 

measure.  

Table 3 summarizes the outcome of our multiple regression analyses. The variance 

shared with diagnosis but not motor performance (VarG) was not significant for any 

adaptation indicator, the variance shared with diagnosis and motor performance 

(VarJ) was significant for three, and the variance shared with motor performance 

alone (VarP) was significant for all four indicators. We noticed that some of our sub-

jects' responses were slow, and terminated only after target disappearance, which 

could potentially bias our CA and MT scores. We therefore decided to replicate the 

regression analyses using only responses which terminated in time. One control sub-

ject and four patients had to be excluded from this replication because of too few 

acceptable movements. After sorting out all movements with (MT + RT) > 2 s there 

was no more difference between groups for MT (t(27) = -0.46, p > 0.5). However, 

the remaining data yielded exactly the same pattern of significant and non-significant 

variance components as in Table 3. 

 VarG VarJ VarP 

AI 0.0123 0.3530*** 0.2600** 

AR 0.0001 0.1687* 0.3883*** 

AT 0.0449 0.0744 0.1719* 

DA  0.0327 0.3168*** 0.1691* 

Tab. 3  Outcome of linear regression analyses. The total variance of each adaptation indicator was 

partitioned into a component VarG shared with subject group but not with motor performance, a com-

ponent VarJ shared jointly with group and motor performance, and a component VarP shared with 

motor performance alone. Symbols have the same meaning as in Tab. 2. 

One might argue that our performance measures are not independent from adaptation 

since they were taken during the adaptation phase. We therefore recalculated CA, 

RT, PV, and MT using the baseline phase, and repeated the multiple regression 
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analysis: the significance pattern didn't change, which suggests that our performance 

measures were not corrupted by adaptation ability. 

One might further argue that the observed relationship between motor performance 

and adaptation indicators is artefactual: it would also emerge if this relationship 

didn’t exist on a subject-to-subject basis, as long as the patients as a group would 

exhibit both a poorer motor performance and a poorer adaptation than controls as a 

group. Figure 4 illustrates for one performance and one adaptation score that this was 

not the case: patients and controls overlapped with respect to AI, as well as with re-

spect to MT.  More importantly, the multiple regression between motor performance 

and adaptation indicators remained significant even when the analysis was limited to 

the patient group only (R
2

AI = 0.6494*, R
2

AR = 0.6515*, R
2

AT = 0.2955, and R
2

DA = 

0.7487**). 

Fig. 4  Relationship between movement time and adaptive improvement AI in patients (gray) and 

controls (white). Each symbol represents one subject. 

Since the above analyses included five different measures of motor performance, we 

explored which of them are crucial for the significance pattern in Table 3, by repli-

cating the regression analyses with different subsets of those measures. We found 

that the significance pattern persisted as long as the analyses included MT and CA, 

or MT and RT. We therefore concluded that MT, CA, and RT are indicators of adap-

tive success. These are the same three measures which differed significantly between 

patients and controls, and which correlated significantly with patients' ataxia scores 

(see Table 2). As an example, Figure 4 depicts the relationship between MT and AI 

in both subject groups. 
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5.5  Discussion 

The present study evaluated adaptive success and motor performance in patients with 

cerebellar cortical degeneration, and in healthy control subjects. In accordance with 

literature (Deuschl et al. 1996; Diedrichsen et al. 2005; Gauthier et al. 1979; Martin 

et al. 1996; Maschke et al. 2004; Tseng et al. 2007; Weiner et al. 1983), we found 

that patients adapted less well than controls. Also in accordance with previous work 

(Martin et al. 1996; Maschke et al. 2004; Weiner et al. 1983), the deficit was not lim-

ited to the adaptation phase, but rather continued undiminished throughout the reten-

tion and transfer into the de-adaptation phase. Such a persistence of the deficit is in-

teresting, as it allows an insight into the underlying pathology. It is thought that 

adaptive improvement is based on two distinct processes, a recalibration of sensory-

to-motor transformation rules, and strategic control by anticipations, associative 

stimulus-response pairings, and other workaround schemes; in contrast, retention, 

transfer, and de-adaptation are thought to reflect recalibration alone (Bock 2005; 

McNay and Willingham 1998; Redding 1996). If so, the persistence of an adaptation 

deficit in our patients would indicate that recalibration but not strategic control is 

impaired by cerebellar degeneration. 

Besides adaptive success, movement performance was also degraded in our patients. 

In accordance with literature, we found an increase of reaction and movement time, 

less efficient online error corrections, but normal peak movement velocity (Bonne-

foi-Kyriacou et al. 1998; Holmes 1917; Hore et al. 1991; Tseng et al. 2007). Previous 

work further reported an increase of movement variability (Martin et al. 1996; Tim-

mann et al. 1999; Tseng et al. 2007) which didn't reach statistical significance in our 

study. This is probably so because our patients' ataxia was relatively mild (see Table 

1); cerebellar areas related to upper-limb ataxia (Martin et al. 1996) may not have 

been profoundly affected in all our patients. 

The main purpose of the present study was to scrutinize the interrelation between 

patients' deficits of adaptation and of motor performance. We therefore partitioned 

the variance of each adaptation indicator into three components. VarG was related to 

subject group but not motor performance, and didn't reach statistical significance for 

any indicator; we therefore have no evidence for the existence of cerebellar circuitry 

dedicated to adaptation but not to motor performance. VarJ was related jointly to 
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group and motor performance, and VarP to motor performance alone. The latter two 

components were significant for most or all adaptation indicators, which suggests 

that cerebellar and extracerebellar brain regions involved in the monitoring and con-

trol of movements also contributed towards adaptive success. This contribution could 

be interpreted in two ways: the respective brain regions could be involved in motor 

performance alone and send their output to adaptive mechanisms located elsewhere, 

or they could be involved in both functions, motor performance and adaptation. 

The above conclusions are pertinent to the two positions on the role of the cerebel-

lum, as outlined in the Introduction. Our findings are in accordance with one of the 

views, which holds that the cerebellum provides performance-related signals as a 

prerequisite for adaptation. They also agree with a compromise between both views, 

which posits that adaptation and motor performance are processed in identical or 

highly interlinked cerebellar structures. However, our findings do not support the 

pure version of the other view, according to which the cerebellum contains circuitry 

dedicated to adaptation but not motor performance.  

Our analyses indicate that three measures of motor performance were associated with 

adaptive success. One of them represented the efficiency of online error corrections. 

The simple correlation between adaptation indicators and this measure ranged be-

tween 0.46 and 0.71, which is similar to the correlations reported before (Tseng et al. 

2007). The correlations were significant in the present work (p<0.01) but not in the 

previous study, possibly because the variables were defined somewhat differently, 

and/or because the sample size was larger in the present (n=2*17) than in the previ-

ous study (n=2*7). The existence of sizable correlations should not be taken as evi-

dence that adaptation is driven by online response corrections; this surmise has been 

convincingly refuted before, and replaced by the view that adaptation is driven by 

sensory prediction errors (Tseng et al. 2007). Instead, the observed correlation could 

reflect the dependence both of adaptive success and of online corrections on a com-

mon causal factor, e.g., cerebellar function. 

The present study not only assessed the role of the cerebellum in sensorimotor adap-

tation, but also provided evidence for adaptive mechanisms located outside the cere-

bellum. As stated above, the significance of VarP suggests that extracerebellar brain 

regions related to motor performance either were involved in adaptation as well, or 

sent their output to other extracerebellar areas dedicated to adaptation. Reasonable 
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candidates for such areas are the inferior parietal and the dorsal premotor cortex: a 

recent neuro-imaging study which controlled for error-related brain activity found 

significant extracerebellar activation only in these two areas (Girgenrath et al. 2007). 
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6.1  Abstract 

The aim of the present study was to elucidate the contribution of the superior and 

posterior inferior cerebellum to adaptive improvement and aftereffects in a visuomo-

tor adaptation task. Nine patients with ischemic lesions within the territory of the 

posterior inferior cerebellar artery (PICA), six patients with ischemic lesions within 

the territory of the superior cerebellar artery (SCA) and 17 age-matched controls 

participated. All subjects performed center-out reaching movements under 60° rota-

tion of visual feedback. For the assessment of aftereffects, we tested retention of ad-

aptation and de-adaptation under 0° visual rotation. From this data we also quantified 

five measures of motor performance. Cerebellar lesion-symptom mapping was per-

formed using magnetic resonance imaging (MRI) subtraction analysis. Adaptive im-

provement during 60° rotation was significantly degraded in PICA patients and even 

more in SCA patients. Subtraction analysis revealed that posterior (Crus I) as well as 

anterior cerebellar regions (lobule V) showed a common overlap related to deficits in 

adaptive improvement. However, for aftereffect measures as well as for motor per-

formance variables only SCA patients, but not PICA patients showed significant dif-

ferences to control subjects. Subtraction analysis showed that affection of lobules V 

and VI were more common in patients with impaired retention and de-adaptation, 

respectively. Data shows that areas both within the superior and posterior inferior 

cerebellum are involved in adaptive improvement. However, only the superior cere-

bellum including lobules V and VI appears to be important for aftereffects and there-

fore true adaptive ability.  
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6.2  Introduction 

It has been argued in the past that sensorimotor adaptation depends on the integrity 

of the cerebellum, since patients with cerebellar disease show impaired adaptation to 

force fields (Maschke et al. 2004; Smith and Shadmehr 2005) and visual distortions 

while walking (Morton and Bastian 2004), pointing (Gauthier et al. 1979; Synofzik 

et al. 2008; Tseng et al. 2007; Weiner et al. 1983; Werner et al. 2008), or performing 

ballistic elbow flexion and extension movements (Deuschl et al. 1996). Not only 

adaptive improvement, that is the reduction of errors during adaptation phase, but 

also aftereffects (Maschke et al. 2004; Morton and Bastian 2004; Smith and Shad-

mehr 2005; Synofzik et al. 2008; Tseng et al. 2007; Weiner et al. 1983; Werner et al. 

2008) and generalization (Morton and Bastian 2004) were found to be degraded. Af-

tereffect tests such as de-adaptation, retention or catch trials (that is single trials 

without perturbation during the adaptation phase) are commonly conducted to distin-

guish true adaptation or recalibration of sensory-to-motor transformation rules from 

adaptive improvement. The latter is thought to be achieved by recalibration on the 

one hand and strategic control such as cognitive updating of perceived feedback po-

sitions on the other hand. Since strategic control is thought to be short-lived and task-

specific, it exclusively effects adaptation phase and has no impact on post adaptation 

phases or catch trials (Bock 2005; McNay and Willingham 1998; Redding et al. 

2005; Redding and Wallace 1996; Werner and Bock 2007). In accordance with this 

reasoning sensorimotor recalibration and not just strategic planning is impaired in 

cerebellar patients. 

Although there is general agreement that the cerebellum is involved in true sensori-

motor adaptation, it is still under debate which specific parts of the cerebellum con-

tribute. Several functional brain imaging studies in healthy human subjects have re-

ported cerebellar activation both in visuomotor and force field adaptation tasks. The 

majority of studies report activations of the superior parts of the cerebellum (in par-

ticular in lobules IV, V and VI) (Della-Maggiore and McIntosh 2005; Diedrichsen et 

al. 2005; Imamizu et al. 2003; Imamizu et al. 2000; Seidler and Noll 2008; Seidler et 

al. 2006; Shadmehr and Holcomb 1997). One of these studies did not cover the more 

inferior parts of the cerebellum and, therefore, cannot exclude additional contribu-

tions of these parts of the cerebellum (Shadmehr and Holcomb 1997). The studies, 

which covered the entire cerebellum, are partly contradictory. Some studies report 
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adaptation-related activity in the superior cerebellum only (Della-Maggiore and 

McIntosh 2005; Seidler and Noll 2008; Seidler et al. 2006), whereas others found 

activation both in the superior and the posterior inferior cerebellum (lobules VIIB 

and VIII; Diedrichsen et al. 2005; Nezafat et al. 2001). It has to be noted, however, 

that not all studies carefully controlled for cerebellar activation related to motor per-

formance such as hand acceleration or online motor corrections, which also have 

been shown to activate the superior (Diedrichsen et al. 2005; Grafton et al. 2008; 

Seidler et al. 2004), but also inferior parts of the cerebellum (lobule VIII; Diedrich-

sen et al. 2005). 

The comparison of patients with ischemic stroke within the territory of the superior 

cerebellar artery (SCA) and the posterior inferior cerebellar artery (PICA) is a useful 

human cerebellar lesion condition to further elucidate the contribution of the superior 

and inferior cerebellum to sensorimotor adaptation. The SCA commonly supplies the 

anterior lobe (lobules I-V) and the more superior parts of the posterior lobe (lobules 

VI and Crus I), whereas the PICA commonly supplies the more inferior parts of the 

posterior lobe (lobules Crus II-X). Vascular territories, however, are variable and 

PICA strokes can involve Crus I (Timmann et al. 2009 for recent review).  

As yet, two human vascular cerebellar lesion studies have assessed visuomotor adap-

tation. These studies have revealed contradictory results. One single-case study 

found a marked adaptation deficit following an SCA lesion (Pisella et al. 2005); 

however the other, well-cited study claimed that PICA lesions result in adaptation 

deficits but intact motor performance (Martin et al. 1996). To clarify this issue, we 

decided to compare motor performance and visuomotor adaptation in a larger sample 

of patients with either PICA or SCA territory involvement. 

 

6.3  Methods 

Subjects 

We acquired data from fifteen patients with unilateral focal cerebellar lesions (mean 

age 57.3 ± 15.1 years; 3 female, 12 male). Nine patients had ischemic infarction 

within the PICA territory. Mean age in this patient group was 55.8 ± 10.3 years, 

mean time since lesion was 15.0 months, and their mean score on the Scale for the 

Assessment and Rating of Ataxia (Schmitz-Hubsch et al. 2006) was 1.7. Six patients 
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presented with ischemic infarction within the SCA territory. Their mean age was 

59.5 ± 21.3 years, mean time since lesion was 17.7 months, and their mean ataxia 

score was 3.2. Thus, the magnitude of ataxia was mild in both patient groups. A gen-

eral survey of patients' clinical and lesion data is given in Table 1. The location and 

extent of cerebellar lesions was defined from MRI data sets, as summarized in Table 

2. MRI revealed no extra-cerebellar lesions in any patient. 

Patient Age Sex Cerebellar Duration  Side Volume Ataxia rating scale 

   disorder of disease   Total Upper-limb 

        right Left 

CZ 41 F PICA 19 L 0.4 0 0 0 

FL 59 M PICA 8 L 1.7 0 0 0 

GE 59 M PICA 13 R 9.9 0 0 0 

MT 42 M PICA 20 R 22.8 0 0 0 

RK 46 M PICA 19 L 11.9 0 0 0 

SC 69 M PICA 18 R 10.3 6 1 1 

WS 57 M PICA 15 R 31.4 2 0 0 

JM 64 M PICA 7 L 22.7 1 0 0 

KM 65 M PICA 16 L 30.5 6 0 3 

HG 67 M SCA 0 L 2.6 4 1 2 

JL 18 F SCA 12 L 1.0 0 0 0 

KW 75 M SCA 46 L 5.3 7 0 2 

LR 72 M SCA 11 R 1.2 2 1 0 

LZ 69 F SCA 22 R 0.3 4 0 1 

MM 56 M SCA 15 L 1.1 2 0 0 

Tab. 1  Basic characteristics of patients in the present study: Age, sex (F-female; M-male), cerebellar 

disorder (PICA - infarct of posterior inferior cerebellar artery; SCA - infarct of superior cerebellar 

artery), duration of disease (time since lesion in months), side (R-right, L-left), volume of the lesion 

(in cubiccentimeters), and total as well as upper-limb ataxia scores from SARA (Scale for the assess-

ment and rating of ataxia; Schmitz-Hubsch et al. 2006). Note that subscores of upper-limb ataxia of 

the right and left arm were summed up, and no means were taken as in the original publication. 
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Patient  Vermis  Hemisphere  Nuclei 

   Paravermal  Lateral  

CZ n.a. n.a. l: CRI, CRII n.a. 

FL 

 

VIIAt, VIIB, VIIIA 

 

l: CRII, VIIB, VIIIA,  

VIIIB, IX 

n.a. 

 

n.a. 

 

GE 

 

CRII, VIIAt, VIIB,  

VIIIB 

r: CRI, CRII, VIIB,  

VIIIA, VIIIB 

r: CRI, CRII, VIIB,  

VIIIA 

(r: NI) 

r: ND 

MT 

 

n.a. 

 

r: CRI, CRII, VIIA, VIIB, 

VIIIA, VIIIB, IX 

r: CRI, CRII, VIIB,  

VIIIA, VIIIB 

n.a. 

 

RK 

 

VIIAt, VIIB, VIIIA,  

VIIIB, IX, X 

l: (CRI), CRII, VIIA, VIIB, 

VIIIA, VIIIB, IX 

l: CRI, CRII, VIIB,  

VIIIA, VIIIB 

l: ND p 

 

SC 

 

VIIAt, VIIB, VIIIA,  

VIIIB, IX 

r: CRII, VIIB, VIIIA,  

VIIIB, IX 

r: CRII, VIIB, VIIIA,  

VIIIB 

n.a. 

 

WS 

 

n.a. 

 

r: CRI, CRII, VIIA, VIIB, 

VIIIA, VIIIB, IX 

r: VI, CRI, CRII, VIIA,  

VIIB, VIIIA, VIIIB, IX 

r: ND p 

 

JM 

 

n.a. 

 

l: (CRI), CRII, VIIB,  

VIIIA, VIIIB 

l: CRI, CRII, VIIB,  

VIIIA, VIIIB 

(l: ND) 

 

KM 

 

VIIAt, VIIB, VIIIA,  

VIIIB, IX, X 

l: CRI, CRII, VIIB,  

VIIIA, VIIIB, IX 

l: CRI, CRII, VIIB,  

VIIIA, VIIIB 

(l: ND) 

 

HG n.a. l: IV, V, VI l: VI, CRI, CRII n.a. 

JL n.a. l: IV, V, VI (l: VI) (l: ND) 

KW III, IV, V, VI l:V, VI n.a. (l: NI) 

LR n.a. r: V, VI n.a. (r: ND) 

LZ n.a. r: (V), VI (r: VI, CRI) n.a. 

MM n.a. l: V, VI l: VI n.a. 

Tab. 2  Cerebellar lesion site: Cerebellar lobules are named according to Schmahmann et al. (2000). R 

= right side, l = left side; NI = interposed nucleus, ND = dentate nucleus; n.a. = not affected, p = pos-

terior part of dentate, brackets indicate partial lesions. Common lesions sites in SCA patients are 

marked in bold letters. 
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A group of 17 healthy, adult volunteers (mean age 54.6 ± 8.6 years; 8 females, 9 

males) with no history of neurological disease served as controls. Their data have 

already been presented in our preceding study (Werner et al. 2008). All patients and 

controls were right-handed, and didn't use any drugs affecting the nervous system. 

None of the subjects had prior experience in visuomotor research. The authors’ local 

Ethics Committee had approved the procedure of the experiment, and all subjects 

gave written informed consent. 

Visuomotor adaptation task 

As in our previous study (Werner et al. 2008), subjects sat in front of a digitizing 

tablet holding a pen as shown in Figure 1. They watched a computer screen through a 

horizontally mounted mirror that projected the image of the screen onto the tablet. 

The mirror and surrounding shrouds prevented the sight of the arm. A central starting 

dot and one of eight possible target dots appeared alternately on the screen. The start-

ing dot remained on for 0.3 to 0.5 s, and was then replaced by one of the target dots, 

according to a random sequence. The targets were equally distributed on an imagi-

nary circle of 10 cm radius about the centre, and each lit up for 2.0 s. All subjects 

were instructed to move the pen as accurately and quickly as possible from the start-

ing dot to the target and back. The position of the digitizing pen was registered (reso-

lution: 0.3 mm, 60 Hz), and displayed on the screen as a cursor to provide visual 

feedback about momentary hand position. 

 

 

 

 

 

 

 

 

Fig. 1 Scheme of experimental apparatus with display screen (S), mirror (M), and digitizing tablet (T). 

 
        SS  

  

  

        MM  

  

                    

                      TT  



Fifth study 

 83 

The experiment was subdivided into episodes of 30 s duration, separated by rest 

breaks of about 5 s. Within one episode, six to twelve targets were presented. If not 

stated otherwise, subjects pointed with their dominant, right hand. All were familiar-

ized with the experimental set-up by performing one episode under veridical visual 

feedback, i.e., pen and cursor position coincided. Data registration began with a 

baseline phase of four episodes, again under veridical feedback, with the left hand 

used during the first of those episodes. The subsequent adaptation phase consisted of 

20 episodes, in which visual feedback was rotated by -60° about the starting dot. Af-

ter a one-day to one-week break  subjects returned and performed five episodes in a 

retention phase, once again under -60° rotated feedback. This was followed by two 

episodes of an intermanual transfer phase using the left hand, and one refresh epi-

sode using the right hand, again under rotated visual feedback. Finally came a de-

adaptation phase of five episodes under veridical visual feedback. The whole ex-

periment including instructions lasted about 20 minutes on the first, and about 10 

minutes on the second day. 

Even though all patients presented with unilateral lesions either in the right or left 

cerebellum, they all conducted the greatest part of the experiment with their domi-

nant right hand. This is justified by the fact that even for healthy subjects visuomotor 

adaptation with the right hand is faster, independent of the subjects´ handedness 

(Chase and Seidler 2008). Since we still had the possibility to analyze the effect of 

lesion laterality (see below), we chose to keep the task as practicable as possible for 

the cerebellar patients. 

Data analysis 

Subjects' responses were quantified as in our previous study (Werner et al. 2008). 

We determined the initial error of each movement as the angular difference between 

cursor and target direction 150 ms after movement onset, i.e., before feedback-based 

corrections could become effective. The median value of this error for each episode 

and subject was used for subsequent analyses. For further data reduction, we calcu-

lated the adaptation indicators  

adaptive improvement : AI  [°] = 60 - B + A,       (1) 

adaptive retention:  AR [°] = 60 - B + R,       (2) 
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adaptive transfer :  AT [°] = 60 - B + T,       (3) 

de-adaptation:   DA [°] = D - B,       (4) 

where B and A represent the mean initial error of the last three baseline and adapta-

tion episodes, whereas R, T, and D represent the initial error of the first retention, 

transfer and de-adaptation episode. No attempt was made to quantify the amount of 

savings by comparing the adaptation and retention phases. 

As in our previous study (Werner et al. 2008), we quantified subjects' motor per-

formance as the standard deviation of initial errors during the baseline phase (re-

sponse variability, RV), the coefficient of determination between initial errors and 

the difference between initial and final errors during the adaptation phase (online 

correction ability, CA), as well as the mean movement time (MT), reaction time 

(RT), and peak velocity (PV) across the adaptation phase. 

For statistical analysis, we submitted the initial errors of the adaptation phase to 

analyses of variance (ANOVAs) with the within-factor Episode and the between-

factor Group (levels: control / PICA / SCA). To compensate for heterogeneity of 

variances, we applied Huynh-Feldt-corrections when necessary. In addition we sub-

mitted each adaptation indicator and motor performance parameter to a one-factor 

ANOVA with the between-factor Group. Significant effects of Group were explored 

with Fisher LSD post-hoc tests.  

Again as in our previous study (Werner et al. 2008), we examined the relationship 

between cerebellar disease, motor performance, and adaptive success by partitioning 

the variance of each adaptation indicator. To this end we first calculated several mul-

tiple linear correlations. R
2

P is the multiple coefficient of determination between ad-

aptation indicator and motor performance measures, R
2

G is the simple coefficient of 

determination between adaptation indicator and Group (PICA/controls in a first step 

and SCA/controls in a second step), and R
2

PG is the multiple coefficient of determi-

nation between adaptation indicator and Group as well as motor performance meas-

ures. With the help of those coefficients it is possible to calculate the variance that 

each adaptation indicator shares with motor performance measures (VarP), with 

Group (VarG), and with performance measures and Group jointly (VarJ). These 

shared variances are given by 

VarG = R
2

PG - R
2

P,          VarJ = R
2

G + R
2

P - R
2

PG,          VarP = R
2

PG - R
2

G,             (5) 
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For a more detailed explanation of this method, see, e.g., Bock and Girgenrath 

(2006). 

Imaging data analysis 

In the cerebellar patients, a 3D sagittal volume of the entire brain was acquired using 

a T1-weighted MPRAGE sequence (FOV = 256 mm, number of partitions = 160, 

voxel size = 1.00 x 1.00 x 1.00 mm
3
, TR/TE = 2400/4.38 ms, flip angle = 8 degrees) 

on a Siemens Sonata 1.5 Tesla MR scanner. Ischemic lesions were manually traced 

on axial, sagittal and coronal slices of the non-normalized 3D-MRI data set and 

saved as region of interest (ROI) using MRIcro software (http://www.sph.sc.edu/com 

d/rorden/mricro.html). Spatial normalization into standard proportional stereotaxic 

Montreal Neurological Institute (MNI) space was performed according to the mask-

ing technique described by Brett et al. (2001) using SPM2 (http://www.fil.ion.ucl.ac. 

uk/spm/; Wellcome Department of Cognitive Neurology, London, UK). Based on the 

MNI spatial coordinates of cerebellar lesions the corresponding cerebellar lobules 

were defined with the help of 3D-MRI atlases of the cerebellum (Schmahmann et al. 

2000) and the cerebellar nuclei (Dimitrova et al. 2002). Lesions of vermis, paraver-

mis and lateral hemispheres were considered separately (Schoch et al. 2004). 

By performing a subtraction analysis (Karnath et al. 2002; Rorden et al. 2007) with 

the ROIs in MRICroN (http://www.sph.sc.edu/comd/rorden/mricron/) we were able 

to identify those cerebellar regions related to adaptation data (AI, AR, AT and DA). 

In a first step right-sided lesions were flipped to the left. Secondly we assorted all 

patients into one subgroup with impaired AI, AR, AT or DA and one without im-

pairment in AI, AR, AT or DA, respectively. The cut-off value for this classification 

was the mean value of all control subjects minus one standard deviation. The lesions 

for the impaired and unimpaired patients were added together, creating
 
traditional 

overlap images showing the regions of mutual involvement. Thirdly we subtracted 

the overlap image of the unaffected patients from the impaired groups´ overlap im-

age. This was done for each adaptation variable separately. Our resulting images 

show regions which are commonly damaged in patients with affected AI, AR, AT or 

DA. 
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6.4  Results 

Time course of adaptation 

Figure 2 shows the mean initial error for each group and episode. During the baseline 

phase, initial errors were low for control subjects as well as for patients. At the be-

ginning of adaptation phase, initial errors abruptly increased by a similar amount in 

all groups, and then gradually decrease again throughout the adaptation phase. This 

decrease was most pronounced and consistent in control subjects, less so in PICA 

patients, and least in SCA patients. These group differences persisted throughout the 

remaining experimental phases, except for the convergence of groups at the end of 

the de-adaptation phase. Initial de-adaptation errors abruptly increase without return-

ing to baseline level within five episodes, thus showing that at least some learning 

has taken place in all groups. 

Fig. 2  Initial pointing error for all experimental episodes in SCA patients (black), PICA patients 

(gray), and controls (white). “Left” or “right” indicate episodes in which subjects used their left or 

right arm for pointing. Symbols represent across-subject means, and bars the pertinent standard devia-

tions. 

In accordance with these observations, ANOVA of the adaptation phase yielded sig-

nificant effects of Group (F(2,29) = 18.38; p < 0.001), Episode (F(19,551) = 9.50; p 

< 0.001) and their interaction (F(19,551) = 18.99; p < 0.05), and post-hoc decompo-

sition revealed significant differences between control subjects and PICA (p  < 0.01), 

control subjects and SCA (p < 0.001), as well as PICA and SCA (p < 0.05). For the 

retention and transfer phase, ANOVA yielded significant effects of Group (F(2,29) = 
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8.58; p < 0.01, and F(2,29) = 4.55; p < 0.05, respectively), and Episode (F(4,116) = 

3.47; p < 0.001, and F(1,29) = 12.73; p < 0.01, respectively). Post hoc analysis 

showed significant differences between controls and SCA (p < 0.001), as well as 

PICA and SCA (p < 0.01) during the retention phase, but only between controls and 

SCA (p < 0.01) during the transfer phase. ANOVA for the de-adaptation phase 

yielded significant effects of Episode (F(4,116) = 3.37; p < 0.001) and Group × Epi-

sode (F(4,116) = 6.74; p < 0.001), with significant difference between controls and 

SCA (p < 0.001), and PICA and SCA (p < 0.01) in the first episode. Furthermore, 

comparing the last baseline with the first de-adaptation episode reveals significant 

differences for all groups (controls t(16) = 15.009; p = 0.000, PICA t(8) = 10.573; p 

= 0.000 and SCA t(5) = -4.149, p = 0.009), thus showing some aftereffect in all sub-

jects. 

To explore the role of lesion laterality, we submitted the initial errors of all experi-

mental phases to an ANOVA with the within-factor Episode, and the between-factors 

Group (PICA/SCA) and Lesion Side (right / left). No significant effects including 

Lesion Side were yielded. Because all patients were tested with the right hand, one 

may expect that adaptation was less impaired in patients with left-sided cerebellar 

lesions compared to right-sided lesions. Ataxia score of the right upper limb however 

was not significantly different from the left upper limb in SCA (t(5) = -1.168; p = 

0.296) and PICA patients (t(8) = -1.000; p = 0.347).  

Comparison of each adaptation indicator and motor performance parameter for PICA 

and SCA patients with either right or left sided lesions showed neither significant 

differences nor any trends. Note that our number of patients is small and a larger 

sample might lead to different results. 

Overall adaptation and performance scores 

One-way ANOVAs yielded significant effects of Group for the adaptation indicators 

AI (F(2,29) = 12.12; p < 0.001), AR (F(2,29) = 9.73; p < 0.001), and DA (F(2,29) = 

4.23; p < 0.05), as well as for the performance parameters RT (F(2,29) = 3.85; p < 

0.05), and MT (F(2,29) = 7.14; p < 0.001). The corresponding means are shown in 

Figure 3, along with the outcome of post-hoc analyses. For AT (F(2,29) = 0.95; p = 

0.40), CA (F(2,29) = 1.07; p = 0.36), RV (F(2,29) = 2.45; p = 0.10), and PV (F(2,29) 

= 1.66; p = 0.21), the effect of Group did not reach statistical significance. For the 
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performance measure RV we found an exceptionally large standard error in SCA 

patients as also shown in Figure 3. The poorer adaptation as well as motor perform-

ance of the SCA group cannot be explained by a larger lesion size, since lesions were 

actually smaller in that group (SCA: 1.92 ± 1.82 cc; PICA: 14.40 ± 10.28 cc; t(13) = 

-2.91, p < 0.5). Nor can it be explained by a larger ataxia, since ataxia scores didn't 

differ between groups (t(13) = -1.14, p > 0.5).  

Fig. 3  Mean values and standard deviations for all three groups for AI, AR, DA, RT, MT, and RV. 

The adaptation indicators were calculated by AI [°] = 60 - B + A, AR [°] = 60 - B + R, AT [°] = 60 - B 

+ T and DA [°] = D - B, where B and A represent the mean initial error of the last three baseline and 

adaptation episodes, whereas R, T, and D represent the initial error of the first retention, transfer and 

de-adaptation episode. ***, **, *, and n.s. indicate p<0.001, p<0.01, p<0.05, and p>0.05 respectively. 

Note that the values of the y-axis stand for pointing errors in ° (AI, AR, DA, RV) or for time in s (RT, 

MT). 

Finding an impairment in AI and DA for SCA patients and in AI but not DA for the 

PICA patients does not necessarily show, that the pattern is statistically significant 

for AI and DA measures. Therefore, we performed a further ANOVA with the 

within-factor Adaptation measure (AI, DA), and the between-factor Group. This 

analysis yielded a significant effect of Group (F(2,29) = 7.42; p < 0.01) and a signifi-

cant interaction Group × Adaptation measure (F(2,29) = 3.86; p < 0.05). Post hoc 

analysis showed significant differences between PICA and controls (p < 0.05) as well 

as between SCA and controls (p < 0.001) for AI, and between SCA and controls (p < 

0.001) and between SCA and PICA (p < 0.01) but not between PICA and controls (p 

> 0.05) for DA. 

One might argue that our results might be confounded by the fact that some of the 

patients show involvement of interposed (IN) and/or dentate nucleus (DN). However, 

replicating the one-way ANOVAs with the factor Group (controls/nucleus involve-
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ment/no nucleus involvement) or Group (control/DN involvement/no DN involve-

ment) yielded no significant differences between those two patient groups. 

Partitioning of variances 

When control subjects and PICA patients are considered, the variance of our four 

adaptation indicators can be partitioned into the components shown in Table 3. Thus, 

no indicator shares significant variance with Group only, nor with Group and motor 

parameters jointly, but three indicators share significant variance with motor parame-

ters only. The corresponding analysis for control subjects and SCA patients is found 

in Table 3. Again, no indicator shares significant variance with Group only, but three 

share significant variance with Group and motor parameters jointly, as well as with 

motor parameters only. 

PICA VarG VarJ VarP  SCA VarG VarJ VarP 

AI 0.096  0.146 0.366***  AI 0.049 0.523*** 0.171* 

AR 0.001  0.000 0.150  AR 0.021 0.467*** 0.197* 

AT 0.073 -0.062 0.197*  AT 0.015 0.059 0.137 

DA  0.000  0.001 0.232*  DA  0.003 0.254* 0.283** 

Tab. 3  Results of multiple linear regression analyses for PICA/controls and SCA/controls. The total 

variance of each adaptation indicator was partitioned into a component VarG shared with subject 

group, but not with motor performance, a component VarJ shared jointly with group and motor per-

formance, and a component VarP shared with motor performance alone. Symbols ***, **, and * indi-

cate p<0.001, p<0.01, and p<0.05, respectively, and the absence of a symbol indicates p>0.05. 

To determine whether some motor parameters are more important than others, we 

replicated the analyses in Figure 3, leaving out one motor parameter at a time. It was 

impossible to exclude any parameter without reducing the number of significant ef-

fects, which suggests that all parameters contribute to our results. 

Localization of adaptation and motor performance 

Figure 4 shows the results of the ROI subtraction analyses for all adaptation vari-

ables. The percentage subtraction plots show areas that are more commonly damaged 

in patients with abnormal AI, AR, AT and DA compared to patients with those vari-

ables within the normal range based on control data. The lightest red represents 70% 
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affected group and darkest blue designates regions where there is an identical percent 

of affected and unaffected groups (0%). Cerebellar regions with the highest relative 

percentages of the number of ROIs in the impaired group were analyzed based on 

MRI coordinates as outlined above. 

Fig. 4  MRI subtraction analysis  comparing  lesions in patients with impaired AI, AR, AT, or DA and 

unimpaired AI, AR, AT, or DA, respectively. The adaptation indicators were calculated by AI [°] = 60 

- B + A, AR [°] = 60 - B + R, AT [°] = 60 - B + T and DA [°] = D - B, where B and A represent the 

mean initial error of the last three baseline and adaptation episodes, whereas R, T, and D represent the 

initial error of the first retention, transfer and de-adaptation episode. Coronal views are shown (–y =  

mm behind anterior commissure). The color indicates the level of percentage of a region to be more 

common lesioned in the impaired group. 

Subtraction of the sum of the lesions of the subgroup with unimpaired AI from the 

patients with impaired AI revealed that affection of Crus I (green color; MNI coordi-

nates: x = -18 mm, y = -82 mm , z = -36 mm and x = -18 mm, y = -80 mm , z = -38 

mm) was 36%  and lobule V (green color; coordinates: x = -20 mm, y = -46 mm, z = 

-20 mm) was 27% more common in the AI-impaired subgroup (Schmahmann et al. 

1999). For AR only affection of lobule V (green color; coordinates: x = -20 mm, y = 

-46 mm, z = -20 mm) was 38% more common in impaired patients. Furthermore, for 

the transfer to the other hand Crus II bordering Crus I (yellow color; coordinates: x = 

-10 to -20 mm, y = -82 to -90 mm, z = -32 to -36 mm) was 50% more commonly 

affected in the impaired subgroup and for DA lobule VI (yellow color; coordinates: x 

= -20 mm, y = -56 mm, z = -24 mm) was 50% more commonly affected in DA-

impaired patients. 
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6.5  Discussion 

The purpose of the present study was to further elucidate the role of the cerebellum 

in visuomotor adaptation. We quantified several measures of motor performance as 

well as of visuomotor adaptation, and found that compared to healthy controls, pa-

tients with PICA territory lesions had deficits of adaptive improvement while their 

adaptive aftereffects and motor performance were not reliably degraded. Our afteref-

fect tests, adaptive retention and de-adaptation, require newly developed sensory-to-

motor transformation rules and thus indicate existing recalibration. Previous studies 

have shown a dissociation of adaptive improvement and aftereffect measures, for 

example dependent on age (Bock 2005) or on feedback source (Clower and Bous-

saoud 2000). Therefore, different underlying processes have been assumed. One 

might argue that the de-adaptation measure must merely be the difference between 

the error of the last adaptation episode (with adaptation being achieved by strategic 

control or recalibration) minus the rotation magnitude (60°). This is true for the first 

de-adaptation movement. But already in the second movement, the subjects are cog-

nitively aware of the change and must dismiss their previous strategy because it now 

becomes unsuccessful. Therefore the first de-adaptation episode (about 15 move-

ments) is dominated by recalibration (Clower and Boussaoud 2000; Bock 2005; 

McNay and Willingham 1998; Redding 1996).  

The pattern of our findings therefore suggests that adaptive recalibration remained 

largely intact in the PICA patients, while strategies like anticipations, associative 

stimulus-response pairings, and cognitive workaround schemes may be impaired. 

This would fit well with the observation that subjects with PICA territory lesions 

have problems on complex (Exner et al. 2004; Kalashnikova et al. 2005; Schmah-

mann and Sherman 1998) albeit not on simpler (Richter et al. 2007) cognitive tasks.  

We further found that patients with SCA territory involvement had even more pro-

found deficits of adaptive improvement, and were additionally impaired on adaptive 

aftereffects and motor performance. Also, we showed a significant interaction for 

AI/DA × Group which confirms the assumption of a differentially impaired pattern 

for SCA and PICA patients. Following again the above line of reasoning, it appears 

that the SCA group in contrast to the PICA group indeed had deficits of adaptive 

recalibration. This finding fits well with a previous single-case study which also ob-
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served deficient adaptation effects and aftereffects in an SCA patient (Pisella et al. 

2005), and with neuro-imaging studies reporting adaptation-dependent neuronal acti-

vation in regions commonly supplied by the SCA but not the PICA territory. Fur-

thermore, our findings are consistent with the results of a recent diffusion tensor im-

aging (DTI) study by Della-Maggiore et al. (2008). Here a positive correlation be-

tween the rate of adaptation and cerebellar white matter integrity was found in SCA 

regions. Also, our results are partly in line with the findings of Martin et al. (1996). 

Both studies agree that PICA patients show impaired adaptive improvement but in-

tact motor performance. In our study, however, PICA patients were not impaired in 

measures of aftereffect, therefore, different to Martin et al. our results did not find 

impairment in true adaptation. Also, for SCA patients Martin et al. found normal 

adaptive improvement, de-adaptation and motor performance in two subjects, and 

not measurable adaptation with substantial performance deficits in their third subject. 

At a more general level, the distinction between SCA- and PICA-related deficits in 

the present work is compatible with earlier research on other forms of motor learn-

ing: SCA but not PICA patients were found to be impaired on different types of eye-

blink conditioning (Gerwig et al. 2003; Gerwig et al. 2006; Gerwig et al. 2005). 

However, based on the present study alone, it cannot be directly differentiated be-

tween effects of strategic change and recalibration. The assumption of a differential 

contribution of the SCA and PICA territory to strategic change and recalibration 

needs to be confirmed in future experiments in cerebellar patients including clear 

manipulations (e.g., see Mazzioni and Krakauer 2006). 

Unlike both previous studies with patients with focal lesions (Martin et al. 1996; 

Pisella et al. 2005), we found no lateralization of the adaptation deficit to the le-

sioned side. That is, in our study both lesions ipsi- and contralateral to the tested 

hand appeared to result in deficits in adaptive improvement and recalibration. This is 

in accordance to imaging data showing activation of bilateral anterior cerebellar re-

gions correlated to the transfer between different angles of rotation (Seidler and Noll 

2008), to error correction (Imamizu et al. 2000), and to motor execution (Grafton et 

al. 2008). In our study, however, no comparison of the lesioned and non-lesioned 

side was made. Also because of the small sample size, we cannot exclude that defi-

cits are more pronounced on the ipsilesional compared to the contralesional side in a 

larger group of patients with focal lesions.  



Fifth study 

 93 

To further scrutinize the interrelation between adaptation and motor performance, we 

determined the variance shared between each adaptation indicator and group only 

(VarG), motor performance only (VarP), and group jointly with motor performance 

(VarJ). Applying this approach to PICA patients and control subjects, we found that 

only VarP, but not VarG, was significant for most adaptation indicators, suggesting 

that regions outside of PICA territory are involved in motor performance which cor-

relates with adaptive success. However, applying the same approach to SCA patients 

and controls revealed significant contributions of VarJ in addition to VarP to the vari-

ances of adaptation variables. This can be interpreted as the involvement of SCA 

territory and extracerebellar brain regions in the monitoring and control of move-

ments which correlates with adaptation. Confirming the outcome of our previous 

study (Werner et al. 2008), VarG did not reach statistical significance in either data 

set, i.e., we found again no evidence for a cerebellar contribution to adaptation but 

not to motor performance. This however, does not say that adaptation disorders are 

caused by motor performance deficits. Likewise, similar disorders may lead to both 

disordered adaptation and motor performance abnormalities, or, adaptation deficits 

may lead to motor performance deficits. 

A subtraction analysis of MRI lesion data revealed that regions of the posterior lobe 

(Crus I) as well as regions of the anterior lobe (lobule V) show common overlap for 

disordered adaptive improvement. Crus I is commonly supplied by the SCA. How-

ever, variation exists and PICA territory can involve Crus I. In fact, in our study, in 7 

of 9 PICA patients Crus I was affected, but only in 2 of 6 SCA patients. For visuo-

motor recalibration, however, lobules V (anterior lobe) and VI (most superior part of 

the posterior lobe) were the most crucial lesion sites. In line with the results of our 

subtraction analysis only 3 of 9 PICA patients with Crus I involvement were im-

paired in AR and 2 of 9 patients in DA. This region of the superior cerebellum has 

been discussed in numerous imaging studies as important for the processing of per-

formance errors (Diedrichsen et al. 2005; Grafton et al. 2008), for the transfer of ad-

aptation (Seidler and Noll 2008), and as a storage site for internal models (Imamizu 

et al. 2000). A recent lesion study tested visuomotor adaptation in patients with cere-

bellar degeneration (Rabe et al. 2009) and found a significant negative correlation 

between the adaptation deficits and the degree of cerebellar atrophy in the intermedi-

ate zone of the posterior lobe. Since their adaptation measure includes aiming errors 



Fifth study 

 94 

during adaptation phase as well as catch trials, it can be compared to both our AI and 

DA. For those variables we find an involvement of the more intermediate parts of 

lobules Crus I and VI (which are parts of the cerebellar posterior lobe) and are in 

accordance with the results in degenerative patients. For the transfer to the other 

hand subtraction analysis reveals an involvement of a more posterior region (Crus II 

bordering Crus I). This result indicates that the intermanual transfer might not indi-

cate a deficit in recalibration in cerebellar patients but does require strategic control. 

Finally, our results cannot be explained by a difference in lesion size in the two pa-

tient groups. On the contrary, mean lesion size of our PICA patients was significantly 

larger than that of our SCA patients. This shows that the exact location of the lesion 

is more essential than mere size.  

The present study as well as previous human cerebellar lesion studies (Deuschl et al. 

1996; Gauthier et al. 1979; Maschke et al. 2004; Morton and Bastian 2004; Smith 

and Shadmehr 2005; Synofzik et al. 2008; Tseng et al. 2007; Weiner et al. 1983; 

Werner et al. 2008) examined adaptation to sudden visuomotor perturbations. Ani-

mal cerebellar lesion studies suggest that abnormalities may be more marked follow-

ing adaptation to gradual perturbations (Robertson and Miall 1999). It would be of 

interest to compare adaptation to gradual and sudden perturbation in future studies in 

cerebellar patients. 

In conclusion, the present study confirms the importance of the cerebellum for 

visuomotor adaptation. While adaptive improvement was impaired in both PICA and 

SCA patient groups visuomotor recalibration seems to be located within the SCA 

territory especially lobules V and VI being of particular importance. 
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7  Main findings and conclusions 

 

7.1  Theoretical relevance 

The present thesis investigates selected behavioral characteristics of sensorimotor 

adaptation, which is a special form of motor learning. In addition, we tried to clarify 

the role of the cerebellum in the adaptation process. Both approaches aim at guiding 

a further understanding of sensorimotor adaptation and its localization within the 

CNS. 

The thesis contains the first experiment ever to directly reveal a positive effect of 

explicit knowledge on sensorimotor adaptation (Study 1). In particular, Study 1 

shows that the benefit of explicit knowledge is task-specific and short-lived, and 

therefore suggests that this benefit relates to strategic control rather than to an adap-

tive recalibration of the sensorimotor system. This positive effect was also confirmed 

by Imamizu in a later study (2007), who showed that explicit knowledge reduces 

movement errors during adaptation to opposing visual distortions and also leads to an 

overall improved level of adaptation. Furthermore, Heuer and his colleagues not only 

revealed individual differences of the amount of explicit knowledge to correlate with 

the degree of adaptation (Heuer and Hegele 2008a), but also found that implicit and 

explicit processes occur independently and concurrently (Sulzenbruck and Heuer 

2009). These results are in accordance with research on serial reaction time tasks (a 

different form of motor learning), where explicit knowledge also improved learning 

(Nissen and Bullemer 1987; Reber and Squire 1998; Sakai et al. 2003). 

For the identification of the neural correlates of explicit knowledge, results of neuro-

imaging studies provide detailed information. Whenever explicit sequence learning 

(as opposed to implicit learning) occurs in a serial reaction time task, brain activation 

can be detected in the dorsolateral prefrontal cortex (BA9, 10 and 46) (Grafton et al. 

1995; Jueptner et al. 1997; Sakai et al. 1998; Willingham 1998; Willingham et al. 

2002). A further study compared brain activity during explicit sequence learning to 

activity during adaptation to rotated vision when subjects performed the same motor 

task (Ghilardi et al. 2000). As a result, activity in the dorsolateral prefrontal and ante-

rior cingulate cortices was associated with explicit learning, while posterior parietal 

cortex activity was related to visuomotor adaptation. In this context, it must be men-
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tioned that the authors state visuomotor adaptation to be a form of implicit learning 

without determining the subjects’ awareness of the distortion. 

The above findings together with the results of the first study of the present thesis 

lead to the assumption that the involvement of the dorsolateral prefrontal cortex in 

sensorimotor adaptation has a beneficial effect. Moreover, it can be deduced that 

explicit knowledge plays a role in an early stage of the adaptation process in our 

study: several imaging studies found early learning to engage prefrontal brain regions 

(e.g., Clower et al. 1996; Inoue et al. 1997; Sakai et al. 2003; Seidler et al. 2006; An-

guera et al. 2007), especially the dorsolateral prefrontal cortex (Anguera et al. 2010). 

Another topic of this thesis is the adaptation to left-right reversed vision, where an 

increase of response variability could be detected for targets along the axis of inver-

sion. Also, a discrete change of the response direction was found for targets perpen-

dicular to that axis and a discrete change followed by a gradual "backward" shift for 

diagonal targets (Studies 2 and 3). Therefore, the present thesis shows for the first 

time that adaptation to reversed vision is based on the same continuous and discrete 

processes as adaptation to visual rotations. Until today, numerous studies used adap-

tation to mirror-reversed vision (Cunningham 1989; Linden et al. 1999; Balslev et al. 

2002; Richter et al. 2002; Miyauchi et al. 2004; Caselli et al. 2006; Tanaka et al. 

2007; Paquet et al. 2008) and then contextualized their results with findings from 

adaptation to rotations. By showing that adaptation to left-right reversal and to rota-

tions follow the same basic principles, a comparison of results now becomes possible 

and acceptable. For example, Paquet et al. (2008) can indeed compare their results of 

reversal adaptation in patients with Parkinson’s disease to those of adaptation to a 

90° rotation in the same patient group (Contreras-Vidal and Buch 2003). Similarly, 

the results of the present studies on adaptation in cerebellar patients (Studies 4 and 5) 

can be generalized to patients adapting to a visual reversal instead of a rotation. 

The finding of Studies 2 and 3 are in accordance with results from a Canadian work 

group which compared adaptation to 180° rotation and to left-right reversion in pa-

tients suffering from either frontal lobe lesions (Richer et al. 1999) or Huntington’s 

disease (Boulet et al. 2005). A careful examination of the statistical analyses of those 

studies shows that both distortions were learned by the patients in the first study, 

whereas deficits of the patient group persisted in both distortions in the second study. 



Main findings and conclusions 

 

 101 

Larger deviations during reversal adaptation in both experiments may simply be ex-

plained by a different difficulty level of the distortions, and they should be less dis-

tinct when comparing adaptation to visual reversal to a (more difficult) 90° rotation. 

It can be deduced from the present results that adaptation to those different distor-

tions is based on very similar neuronal networks. So far, only one neuro-imaging 

study tried to directly compare activation during adaptation to visual reversal and to 

rotation (Moreno-Briseno et al. 2009). For both distortions, brain activity was found 

in the prefrontal, premotor and posterior parietal cortices as well as in the cerebel-

lum, thalamus and putamen differing only in activation intensity. However, move-

ment errors differed between the distortions and were not adequately controlled. This 

shortcoming might account for the detected difference in activation intensity and 

should be carefully considered in future imaging studies. 

This thesis further focuses on the question whether visuomotor adaptation is a local 

or a global phenomenon. A first approach (Study 1) showed that variable practice in 

all directions does not lead to faster rotation adaptation than restricted training in 

eight directions and does not have a beneficial effect on recalibration. Accordingly, 

this specific condition of practice (namely variable practice) presumably does not 

lead to a greater generalization or a global adaptation process, respectively. This re-

sult is in contrast to the results of Heuer and Hegele (2008b), who showed that one 

condition of practice (namely the use of terminal visual feedback) could lead to a 

local adaptation to altered gain, which has been postulated to be a global phenome-

non (Bock 1992; Krakauer et al. 2000). Therefore, while global adaptation seems to 

be a soft constraint in gain adaptation, the present results confirm the notion of local 

adaptation being a rigid constraint of adaptability in rotation adaptation. 

Yet, what is the score on adaptation to (left-right) reversed vision, where in fact dif-

ferent targets require an adaptation to different rotation angles? The findings of the 

Studies 2 and 3 show that different adaptive processes operate in a direction-specific 

fashion. Several studies had already shown that it is possible to adapt to different 

visual rotations in separate workspace regions (Imamizu et al. 1995; Roby-Brami and 

Burnod 1995; Ghahramani et al. 1996; Krakauer et al. 2000). Yet, none of them ana-

lyzed the course of adaptation, so the present results are the first to reveal simultane-

ous discrete and gradual adaptation processes for different target directions, i.e., 

workspace regions. Furthermore, all of the above mentioned studies used clearly 
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separated workspace regions, therefore the overlap of directionally tuned modules 

(see also Chapter 1.1.1) could not be scrutinized. Study 3 of the present thesis is the 

first to analyze adaptation to different rotations in directional proximity. Also, it 

shows that transfer to unpracticed targets can well be predicted by superposing 

neighboring adapted modules. Transfer to the unpracticed targets, however, was not 

complete. In contrast, Krakauer (2000) showed complete transfer after adaptation to 

a 30° rotation with the same number of training targets. This discrepancy seems to 

oppose the previously postulated comparability of adaptation to visual rotations and 

reversals. On a more profound level, however, modeling of the overlapping Gaussian 

tuned processes reveals similar underlying mechanisms for adaptation to both distor-

tions and explicitly shows the benefit of modeling approaches in neuro-physiological 

research. Conclusively, the results of the present thesis suggest for the first time that 

adaptation to reversed vision, just like adaptation to visual rotations (Imamizu et al. 

1995; Roby-Brami and Burnod 1995; Ghahramani et al. 1996; Pine et al. 1996; Kra-

kauer et al. 2000; Wang and Sainburg 2005), is a local phenomenon based on direc-

tionally tuned modules. 

A comparison of directionally tuned adaptive modules with similarly tuned neurons 

can provide insight into where the adaptation process is represented within the CNS. 

Directionally tuned neurons
5
 have been identified in primates‘ motor areas of the 

frontal lobe (Georgopoulos et al. 1982; Amirikian and Georgopoulos 2000), posterior 

parietal cortex (Andersen et al. 1985; Kalaska et al. 1990) and lobules V and VI of 

the cerebellum (Coltz et al. 1999). While tuning functions during adaptation to force 

fields are similar to tuning properties of cerebellar Purkinje cells (Thoroughman and 

Shadmehr 2000), Krakauer and colleagues (2009) suggest that the Gaussian tuning 

curves in visuomotor adaptation are best identified with the Gaussian tuned neurons 

of the parietal cortex (Andersen et al. 1985). In a different study, however, discharge 

of parietal neurons was modeled with cosine functions (Kalaska et al. 1990). Fur-

thermore, Krakauer‘s assumption is based on the often cited results of Georgopoulos 

et al. (1982) who originally postulated a cosine tuning function for motor cortex ac-

tivity, but revised their findings in a more detailed analysis by showing that the tun-

ing width of motor cortex neurons is indeed tuned in the circular normal distribution 

(von Mises distribution) with a much narrower tuning width than the standard cosine 

                                                 
5
 In directionally tuned neurons, the frequency of discharge varies systematically with the direction of 

a movement. 
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tuning function (Amirikian and Georgopoulos 2000). Given these recent findings, the 

motor cortex might indeed be a potential site for visuomotor adaptation. This notion 

is further supported by the fact that primate neurons of the motor cortex change their 

preferred direction of discharge during adaptation to a visuomotor rotation (Paz et al. 

2003; Paz and Vaadia 2004a). Conclusively, the results of this thesis suggest that 

adaptation to visual rotation and reversal are located either in the parietal or in the 

motor cortex, or in the connections between those two areas.  

It can be argued that the adapted neurons are unlikely to represent simple motor 

command signals and that their population rather reflects the formation of an internal 

model (Gandolfo et al. 2000). At first glance, this view is supported by the results of 

Study 3 of this thesis, showing different tuning widths for different rotation angles. 

However, a detailed analysis of the literature reveals that the widths of neural tuning 

functions are also variable (Kalaska et al. 1990; Amirikian and Georgopoulos 2000), 

and that simulated tuned units show different distribution widths after adaptation to 

different rotations (see Fig. 7 in Tanaka et al. 2009). Furthermore, single-cell re-

cordings revealed that the information content in the activity of directionally tuned 

neurons improves after adaptation, which again allows an accurate reconstruction of 

a hand movement direction from neuronal activity (Paz and Vaadia 2004b). 

The results of Studies 2 and 3 of the present thesis were achieved by a novel and de-

tailed adaptation data analysis, using frequency distributions of adaptation parame-

ters. This method is likely to be very useful in further research on sensorimotor adap-

tation, since it allows the dissection of the time course of adaptation to different me-

chanic and visual distortions. For example, Sülzenbrück and Heuer (2009) studied 

adaptation to a sliding lever, which acts like a tool used in laparoscopic surgery. It 

causes a complex transformation that is still similar to a visual reversal. They found 

that subjects adapted to a mirror distortion instead of learning the exact lever trans-

formation. However, without carefully analyzing the time course of adaptation with 

the help of frequency distributions, it cannot be ruled out that adaptation was not 

completed and the mirror distortion is therefore only an intermediate step on the 

(possibly gradual) adaptation process to the lever distortion. 

Yet another research focus of this thesis investigates the role of the cerebellum in 

visuomotor adaptation (Studies 4 and 5). The results of both studies suggest that 

adaptive recalibration is impaired in patients with cerebellar cortical degeneration 
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(Study 4) and with lesions within the SCA territory (Study 5). By contrast, the out-

come indicates that recalibration remains intact in PICA patients, while strategic con-

trol is degraded in that very patient group (Study 5). Related to this issue, Taylor et 

al. (2010) recently exposed patients with cerebellar degeneration to a +45° visual 

rotation and instructed them to point at the next neighbor of the currently highlighted 

target to cancel out the effect of the rotation. The patients were able to implement the 

explicit strategy and, furthermore, their performance remained stable over the course 

of adaptation (Taylor et al. 2010), while for healthy control subjects pointing errors 

gradually increase in an overcompensatory fashion (Mazzoni and Krakauer 2006; 

Taylor et al. 2010). This finding has been interpreted as evidence for the fact that 

cerebellar pathology selectively disrupts implicit adaptation. However, the result of 

Study 1 of the present thesis shows the involvement of another (even beneficial) 

strategy than the one of deliberate past-pointing in visuomotor adaptation, which 

confirms the notion that impairment in cerebellar patients must not be restricted to 

implicit adaptation or recalibration, respectively (Study 5).  

This thesis clearly demonstrates a dissociation of impairments depending on the af-

fected cerebellar area (Study 5). Therefore, results of studies on patients with a cere-

bellar degeneration should not be interpreted precipitately. It could for example be 

possible that Taylor et al. (2010) only tested patients who were more affected in su-

perior parts of the cerebellum and therefore did not find any impaired explicit strat-

egy in their patient group. A different study with cerebellar patients shows that the 

slow process of adaptation is less impaired during adaptive control of saccades, while 

the fast process or strategic control, respectively, is absent (Xu-Wilson et al. 2009). 

Following the above line of reasoning (and assuming that the adaptation of pointing 

movements and of saccades are similarly processed by the cerebellum), it is conceiv-

able that only patients participated in that study who were more affected in posterior 

inferior parts of the cerebellum. Thus, the present thesis highlights the importance of 

voxel-based morphometry (Ashburner and Friston 2005; Donchin et al. submitted) or 

volumetric analysis of MR images (Dimitrova et al. 2006; Brandauer et al. 2008; 

Rabe et al. 2009) for determining the affected area in patients with cerebellar cortical 

degeneration. 

A further purpose of this thesis is to scrutinize the interrelation between deficits of 

adaptation and of motor performance in cerebellar patients (Studies 4 and 5). A parti-
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tioning-of-variances approach yielded no evidence for the existence of cerebellar 

circuitry related to adaptation but not to motor performance. These novel results fur-

ther suggest that cerebellar regions, especially areas of the superior cerebellum 

(Study 5), and extracerebellar brain regions could be exclusively involved in motor 

performance or could be involved in both motor performance and adaptation. It re-

mains an open question whether motor performance is exclusively processed within 

the cerebellum as a prerequisite of adaptation located elsewhere in the CNS, or 

whether both functions are processed in identical or highly interlinked cerebellar 

structures. To definitely answer this question it would be necessary to introduce a 

task that separates both features. One approach could be telling the patients to use the 

explicit strategy of past-pointing (Taylor et al. 2010), so that they produce no more 

movement errors. However, a mismatch remains between observed visual feedback 

and felt movement, the so called prediction error. This prediction error was reduced 

by gradually introducing the distortion in a stepwise fashion, yielding contradictory 

results: On the one hand, cerebellar patients showed degraded gradual as well as 

sudden adaptation to a visual rotation, and impairments did not correlate with sever-

ity of ataxia (Klemfuss et al. 2008). On the other hand, only patients with severe 

ataxia were impaired in sudden but not in gradual force field adaptation (Crisci-

magna-Hemminger et al. 2010). Yet, adaptation to sudden as well as to gradually 

introduced distortions involve several different movement parameters that are identi-

fied by the present thesis to be related to an adaptation deficit. In Study 4, error cor-

rection ability, movement time and reaction time were necessary for an explanation 

of the variability of adaptation indicators, whereas in Study 5, peak velocity and re-

sponse variability additionally contributed to the correlation. Thus, neither the use of 

an explicit strategy nor the gradual introduction of the distortion can contribute to a 

solution of the question. Future work should test cerebellar patients in a setting were 

their hand is passively moved along a robot-generated and fixed path. This path 

could then be altered gradually with a cursor that is programmed to always move to 

the target. This mere exposure to a visual distortion has previously been shown to 

lead to recalibration in healthy subjects (Cressman and Henriques 2010) without pro-

ducing movement errors, nor noticeable prediction errors, nor volitional movements 

at all. 



Main findings and conclusions 

 

 106 

Another novel finding of the present thesis is that specific lobules of the cerebellum 

can be associated with different roles in visuomotor adaptation (Study 5): Lobules V 

and VI appear to be important for recalibration, whereas lobule V as well as Crus I 

are the most crucial lesion sites for adaptive improvement. Correspondingly, the re-

gion surrounding the primary fissure (lobules V and VI) has been discussed in sev-

eral imaging studies as key player in sensorimotor adaptation (Imamizu et al. 2000; 

Diedrichsen et al. 2005; Grafton et al. 2008; Seidler and Noll 2008). Besides, a re-

cent clinical study tested adaptation to visual rotation and to a force field in patients 

with focal lesions (Donchin et al. submitted) and re-analyzed the data of another 

group of patients with cerebellar degeneration (Rabe et al. 2009). In accordance to 

the present results, they found lobule VI to be crucial for adaptation to a visual rota-

tion in both patient groups. Furthermore, lobules IV-V, Crus I and dentate nucleus 

were related to adaptation in patients with focal lesions, and lobules VIII-X or lob-

ules IV-V, VIIIb-X and Crus I in degenerative patients, depending on the type of 

analysis. Accordingly, there are some deviations from Study 5 of the present thesis, 

but they are not consistent throughout patient groups/analyses and might be ex-

plained by methodical differences (passively versus actively stopped movements, 

size of rotation angle, definition of adaptation variables). 

 

Fig. 2  Lateral view of the brain (modified from Seidler 2010). Brain regions whose involvement in 

visuomotor adaptation was scrutinized within this thesis: prefrontal cortex (PFC), motor cortex (MC), 

parietal cortex (PC), superior cerebellum (SC) and posterior inferior cerebellum (PIC). 

In summary, this thesis scrutinizes the involvement of several brain regions in 

visuomotor adaptation. So far, it is commonly accepted that a network of different 
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brain regions is involved in the adaptation process. Then again, adaptation is a highly 

selective process that might possibly require only distinct areas of those brain re-

gions, e.g., transforming a distinct population of neurons. The results of this thesis 

suggest that there can be dorsolateral frontal cortex involvement in adaptation and 

that this involvement should have a beneficial effect (Study 1). Furthermore, the pre-

sent results lead to the assumption that either motor areas of the frontal cortex or the 

posterior parietal cortex can be a possible location for visuomotor adaptation, since 

both of those brain regions contain adequately directionally tuned neurons (Studies 2 

and 3). From the present findings it is also conceivable that adaptation is related to a 

change in the synaptic weights between those two brain regions. The leading investi-

gation of this thesis scrutinizes the role of the cerebellum in visuomotor adaptation 

(Studies 4 and 5). No evidence could be found for the cerebellum being exclusively 

related to adaptation but not to motor performance. Instead the results suggest that 

the cerebellum can be involved in motor performance alone or in motor performance 

and adaptation (Study 4). Finally, the thesis demonstrates that areas both within the 

superior and posterior inferior cerebellum are related to adaptive improvement, but 

only the superior cerebellum, including lobules V and VI, plays a crucial role in the 

recalibration of sensory-to-motor transformation rules (Study 5). 

 

7.2  Practical relevance 

As the investigations of this thesis have a strong theoretical impact, the thesis rather 

belongs to the domain of basic research. By revealing important principles of sen-

sorimotor adaptation and by increasing the knowledge of its neuronal correlation, 

however, these results establish a broad basis for practical applications in sports, 

daily life and rehabilitation. Still, the transferability of the results needs to be vali-

dated in every single case. This drawback is repaid by the fact that a broad range of 

applications becomes possible once the basic mechanisms are understood. 

Results from sensorimotor adaptation studies have the promise of explaining impor-

tant mechanisms of motor learning or memory in general (Krakauer 2009), because 

learning of complex motor skills often requires the acquisition of new movements 

and simultaneous adaptation of already learned movements. For example, when chil-

dren move on from a running wheel to a bicycle, they need to learn to pedal but their 
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handlebar control only needs to be adapted to a different bike. Also, memory proc-

esses do not only play a role during the retention of adaptive processes, but also dur-

ing other forms of motor learning, for example sequence learning. Shadmehr and 

Wise (2005) even proposed motor learning to be the sum of motor skill acquisition 

and sensorimotor adaptation. On the other hand, Krakauer (Krakauer 2010) recently 

proposed a fundamental difference between sensorimotor adaptation and motor skill 

learning: the second being reward-dependent, the first one not. In summary, some 

fundamental similarities can be assumed although the topic remains controversial. 

The results of the present thesis lead to several suggestions for the field of sports:  

- First, explicit knowledge of changes in the environment should be provided 

whenever possible (Study 1). For instance, a coach could easily make avail-

able explicit knowledge of potential differences between rackets or balls that 

are used by the athlete. The study did not test whether explicit knowledge 

needs to be obtained by the athletes themselves, or whether explicit provision 

by another person would be sufficient. In any case, it is important not to give 

explicit instructions about how to handle the different situation, since this 

might have a detrimental effect (Mazzoni and Krakauer 2006).  

- Second, this thesis could not show a beneficial effect of variable practice for 

sensorimotor adaptation (Study 1). These findings are in contrast to motor 

skill acquisition, where this form of practice leads to better performance 

(Kerr and Booth 1978; Green et al. 1995; Whitacre and Shea 2002). Conse-

quently, the present findings suggest that variable training should not be per-

formed if only sensorimotor adaptation processes are involved; for example 

during a unit of pole vault training, where different poles are used depending 

on the height to be cleared.  

- Third, this thesis shows that movements are learned in a directionally re-

gional, or rather Gaussian, manner. Therefore, it might be beneficial to train 

movements in different spatial directions (Study 3). This is done in Aikido, a 

form of martial arts, where a sword exercise consists of cutting in eight direc-

tions. Given the findings of the study, this might indeed lead to a more global 

sense of one’s surroundings or a more global representation of the motor pro-
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gram, respectively. Of course, it has to be validated whether directionally 

learning also holds for the acquisition of complex motor skills. 

In daily life, modern technology leads to an increase of workplaces where arm 

movements are translated into actions on a computer monitor. Here, the investigation 

of visuomotor adaptation and its location within the CNS does not only have a theo-

retical impact, but an obvious practical relevance. Certain professional groups en-

counter very complex distortions between hand movements and the resulting tool 

actions. For example, an excavator operator has to operate numerous hand gears in 

order to obtain a desired bucket movement. Moreover, modern medicine has in-

vented highly sophisticated tools, such as levers used in laparoscopic surgery, which 

are inserted into the abdomen through a small opening. Sliding them to the right or 

left of their fulcrum in the aperture of the abdomen leads to respective movements to 

the left or right inside the abdomen. However, sliding them forward or backward 

within the same plane of movement does not lead to any distortion. Such a tool can 

therefore be approximated by a simple symmetry operation, or a left-right reversal, 

respectively. The findings in this thesis (Study 2) help to understand the mechanisms 

by which such a tool is learned, and it can give implications for the training of sur-

geons. Namely, explicit knowledge on the exact distortion of such an instrument 

should lead to faster learning and can therefore reduce the risk for the patients (Study 

1). 

The most obvious area for practical implications of this thesis is rehabilitation. An 

increasing number of individuals survive CNS disorders such as strokes, and re-

searchers and clinicians are therefore challenged to develop rehabilitation programs 

for motor control and learning. Considering the dose of training on stroke rehabilita-

tion, Kwakkel et al. (2004) showed a correlation between intensity of acute and sub-

acute therapy and outcome. Here, basic principles of motor learning as derived from 

research on healthy subjects or patients with neurological deficits can help deciding 

on the exact training performance. For instance, it is known that adaptation to a left-

ward visual deviation improves the symptoms of right hemispatial neglect, a neuro-

logical deficit where the left-sided space is completely disregarded by the patient 

(Rossetti et al. 1998). This effect was shown to last several weeks (Rode et al. 2007). 

The present thesis further suggests that motor learning should be accompanied by 

explicit knowledge (Study 1), and that patients should train several movement direc-
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tions in order to achieve optimum learning of a task (Study 3, see also Huang and 

Krakauer 2009). 

Adaptation tasks can also be used in rehabilitation to examine whether the CNS’ ca-

pacity to produce normal movement patterns is retained. For example, adaptation of 

pointing movements in a force field causes aftereffects which normalize the initial 

pointing movement of stroke patients (Patton et al. 2006). Accordingly, the results of 

the present thesis suggest that cerebellar patients might still be able to adapt to a 

changing environment if their motor performance was trained intensively during re-

habilitation (Study 4). Study 5 further implies that different rehabilitation programs 

should be developed for different cerebellar patient groups, like patients with 

ischemic lesions within PICA or SCA territory, respectively. 

 

7.3  Critical considerations 

Subjects 

One critical point of this thesis is the fact that all subjects of the behavioral studies 

were students of sports science and do therefore not represent the total population. In 

addition, it is conceivable that their motor experience led to faster adaptation proc-

esses. Yet, the pointing movements used in the experiments consist of very simple 

movements that can easily be performed by any individual. Besides, sensorimotor 

adaptation occurs on an everyday basis anyways (driving a new car, wearing differ-

ent shoes, wearing new prescription glasses…), so considerable advantages for sports 

students are unlikely. 

Methods 

This thesis tries to specify the location of sensorimotor adaptation within the CNS. 

However, the presented studies only scrutinize the involvement of four specific brain 

regions, namely the premotor cortex, motor cortex, parietal cortex and the cerebel-

lum. Although those brain regions were carefully selected (see also Chapter 1.1.2), 

their exclusive role in adaptation is not automatically implied. Other brain regions, 

like the basal ganglia or the cingulate motor area, might also be involved. In particu-

lar, numerous studies on sensorimotor adaptation in patients with basal ganglia dys-

function found degraded adaptation or impaired aftereffects in Parkinson´s (Stern et 
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al. 1988; Canavan et al. 1990; Krebs et al. 2001; Contreras-Vidal and Buch 2003; 

Messier et al. 2007; Paquet et al. 2008; Marinelli et al. 2009) and Huntington´s dis-

ease (Paulsen et al. 1993; Boulet et al. 2005) compared to a healthy and age-matched 

control subjects. 

Furthermore, three out of five studies investigated behavioral characteristics that give 

only indirect information about the neuronal correlates of motor control. One might 

argue that a more direct and thus better approach is the use of neuro-imaging tech-

niques such as functional magnetic resonance imaging or positron emission tomo-

graphy. However, several points support our choice of methodical procedure:  

- First, the method of drawing conclusions about neural correlates from the re-

sults of behavioral studies is widely used and accepted within the scientific 

community (e.g., Wolpert et al. 1995; Krakauer et al. 2000; Schmitz et al. 

2010).  

- Second, imaging techniques are not without drawbacks either (see also Chap-

ter 1.1.2). They show brain activity of the holistic state of the scanned human 

being, including emotions, cognitive functions or movements. Also, statistical 

analyzes have to be conducted very precisely in order to avoid false positive 

activation prediction, as spectacularly shown in a study reporting brain activ-

ity in a dead fish (Bennett et al. 2009).  

- Thirdly, scanners are very expensive and not widely available. 

In Studies 4 and 5, cerebellar patients performed our experiments assuming that ad-

aptation deficits indicate the contribution of the respective brain region to the per-

formed task. However, one should bear in mind that the observed behavior reflects 

the effect not only of the lesion itself but also of connected brain regions which 

might be disturbed by the lesion. Furthermore, it might also be possible that the pa-

tient adjusted to the lesion and is now using a completely different brain subsystem.  

One limitation of the present results is the fact that only adaptation to visual distor-

tions was investigated. It remains unclear whether the present results can be general-

ized to sensorimotor adaptation (e.g., adaptation to force fields), motor learning or 

neural plasticity in general. However, the chosen methods are prototypical for sen-

sorimotor adaptation research. By showing that adaptation to visual rotation and re-

version follows the same basic principles, the present thesis indeed adds to the possi-
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bility to generalize results. As previously discussed (Chapter 7.2), some fundamental 

similarities between sensorimotor adaptation and motor learning in general can be 

assumed. Also, since neural plasticity depends on neural activity and can be induced 

by training (Leonard 1998), sensorimotor adaptation indeed triggers this very proc-

ess. Thus, adaptation research has the promise of revealing basic principles of plastic 

changes within the adult brain. 

Individual studies 

In Study 1, two aftereffect tests for measuring recalibration were conducted. One of 

them (persistence without visual feedback) was shown to improve after the develop-

ment of explicit knowledge. Yet, the results were explained as if explicit knowledge 

had no effect on recalibration. This interpretation can be justified by the fact that the 

subjects had been instructed to continue performing their pointing movements as 

before. Thus, those subjects who had developed explicit knowledge might have ex-

plicitly used it during the persistence phase. In further studies different instructions 

should be given. 

In Studies 2 and 3, we found simultaneous discrete and gradual adaptation. It is con-

ceivable that these findings are merely due to the use of a special target set with two 

targets each on the axis of reversal and on the orthogonal axis. Accordingly, target 

axis effects, i.e., different aiming errors depending on target direction, were found 

during adaptation (Cunningham and Pavel 1991; Caselli et al. 2006) as well as under 

non-transformed movements (Keele 1968). However, the aim of the present studies 

was to show that discrete and gradual adaptive processes can occur simultaneously 

and targets-specific manner. Adaptation to visual reversal with eight uniformly dis-

tributed targets with omitting the previously used axes has recently been investigated 

in our laboratory and revealed discrete processes for all directions (preliminary data). 

Concededly, Study 4 would have yielded additional insights if a volumetric analysis 

of MR images of the cerebellar patients had been performed to determine the af-

fected areas. Still, this study provides novel findings of defining the role of the cere-

bellum in sensorimotor adaptation. Furthermore, the study on patients with focal 

cerebellar lesions (Study 5) promised to give even more insight into exact localisa-

tion of adaptation. One drawback of Study 5 is that laterality effects were only partly 

investigated. Approximately one half of the patients in each group had left hemi-
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sphere lesions, while the other half had right hemisphere lesions. However, all pa-

tients were right handed and performed the task with their dominant hand. In this 

study, both lesions ipsi- and contralateral to the tested hand led to adaptation deficits, 

but a larger sample size might have revealed a more pronounced deficit on the ipsile-

sional side. Also, the results might have been clearer if all patients had been tested 

with the arm ipsilateral to their cerebellar lesion, which is commonly done (Martin et 

al. 1996; Pisella et al. 2005; Donchin et al. submitted). 

 

7.4  Outlook 

The present novel findings raise numerous research questions that could be explored 

in future work. For instance, further research could scrutinize whether adaptation to 

mechanical and visual distortions follows similar processes. On the one hand, this 

thesis reveals a beneficial effect of explicit knowledge on visuomotor adaptation and 

it would be interesting to find out whether the same holds for adaptation to force 

fields. On the other hand, the present results suggest that adaptation to left-right re-

versal and to rotations are based on directionally tuned modules. In particular, Study 

3 suggests different tuning widths for different rotation angles. From this finding it 

can be speculated that differences between narrow tuning widths in adaptation to 

visual rotations and broad tuning widths in force field adaptation might not be dis-

crete but gradual. Future work could investigate this notion.  

In addition, it remains to be determined whether the results from the present behav-

ioral studies can be transferred to different age groups, i.e., adaptation in children or 

in the elderly. Pertinent to this issue, adaptation to reversed vision has recently been 

investigated in our laboratory and, in contrast to the present results, showed it to be 

based only on discrete processes (Thomas et al. 2009).  

A further remaining question concerns the involvement of the cerebellum in motor 

performance as a prerequisite of adaptation or its simultaneous involvement in adap-

tation per se. Apart from the previously mentioned task paradigm, where cerebellar 

patients would merely be exposed to a gradually introduced distortion (see also 

Chapter 7.1), it is also conceivable to conduct a carefully controlled imaging study to 

answer this question. Indeed, such a study has already been conducted in our labora-

tory and is currently being analyzed.  
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Last but not least, this thesis suggests an involvement of prefrontal cortex, motor 

cortex, parietal cortex and the cerebellum in sensorimotor adaptation. The functional 

connections between those different brain regions should be explored in future work. 
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8  Summary 

 

The present thesis investigates behavioral characteristics of sensorimotor adaptation 

and its neural localization. This special form of motor learning occurs whenever an 

altered environment requires the adjustment of already existing motor behavior. Sen-

sorimotor adaptation does not only play a dominant role in everyday life, but it is 

also an intrinsic element in the field of sports. For instance, tennis players have to 

adjust their movements to rackets, balls or field conditions. In the following, the 

main results of the individual studies of this thesis as well as their implications are 

summarized. 

To this day, it is not entirely clear whether explicit knowledge has a beneficial or a 

detrimental effect on sensorimotor adaptation. This thesis therefore tries to determine 

the role of explicit knowledge in sensorimotor adaptation, and is the first to reveal a 

positive effect of explicit knowledge on adaptation. In particular, our results lead to 

the assumption that the positive effect is related to strategic control. Furthermore, 

they suggest that an involvement of the dorsolateral prefrontal cortex leads to im-

proved sensorimotor adaptation. 

Furthermore, the present thesis scrutinizes whether adaptation to different alterations 

of feedback is based on common principles. It compares the adaptive processes 

caused by a rotation and a reversal of visual feedback, and it shows for the first time 

that adaptation to reversed vision is based on the same continuous and discrete 

processes as adaptation to visual rotations. According to this finding, similar neu-

ronal networks for both adaptive processes can be assumed. 

The thesis also investigates whether adaptation to a change of visual feedback is a 

directionally local or a global phenomenon. We show that variable practice in all 

directions does not lead to an improved adaptation to a visual rotation, which is 

thought to be achieved by directionally tuned modules. Accordingly, variable prac-

tice does presumably not induce a greater generalization or a global adaptation proc-

ess, respectively. Also, we show direction-specific adaptive processes during adap-

tation to reversed vision. Moreover, transfer to unpracticed targets could well be 

predicted by the superposition of neighboring adapted modules. These results lead to



Summary 

 

 116

the conclusion that adaptation to reversed visual feedback is based on a local process. 

This finding is associated with the involvement of Gaussian tuned neural units in 

sensorimotor adaptation. 

Finally, this thesis scrutinizes the contribution of the cerebellum to sensorimotor ad-

aptation by investigating adaptation processes and motor performance in two cere-

bellar patient groups. In particular, we investigate whether different parts of the cere-

bellum play different roles during adaptation. The results suggest that adaptive re-

calibration is impaired in patients with cerebellar cortical degeneration as well as in 

patients with lesions within the territory of the superior cerebellar artery. The find-

ings further indicate an intact recalibration but degraded strategic control in patients 

with lesions within the territory of the posterior inferior cerebellar artery. A parti-

tioning-of-variances analysis supports the suggestion that (superior) cerebellar re-

gions are exclusively involved in motor performance or are involved in both motor 

performance and adaptation. 



 

 117

9  Zusammenfassung 

 

Die sensomotorische Adaptation ist eine spezielle Form des motorischen Lernens, 

die immer dann auftritt, wenn veränderte Umweltbedingungen die Anpassung eines 

bereits bestehenden motorischen Verhaltens erfordern. Sie spielt sowohl bei Alltags-

handlungen als auch im Bereich des Sports eine wichtige Rolle. Die vorliegende Ar-

beit befasste sich mit Verhaltensmerkmalen der Adaptation und ihrer neuronalen 

Lokalisation. 

Ein Experiment konnte erstmals einen positiven Effekt von explizitem Wissen auf 

die sensomotorische Adaptation belegen. Aus diesem Ergebnis folgt die Annahme, 

dass eine Beteiligung des dorsolateralen präfrontalen Kortex zu einer verbesserten 

Adaptation führen kann. In einem weiteren Experiment wurde die Adaptation an 

unterschiedliche Veränderungen des visuellen Feedbacks untersucht. Da für ver-

schiedene Adaptationen die gleichen kontinuierlichen und diskreten Prozesse gezeigt 

werden konnten, liegen ihnen möglicherweise ähnliche neuronale Netzwerke 

zugrunde. Diese Arbeit zeigte zudem, dass die Adaptation bei bestimmten Verände-

rungen des visuellen Feedbacks richtungsabhängig erfolgt. Dieses Resultat deutet auf 

die Beteiligung des motorischen oder des parietalen Kortex hin, da beide Hirnareale 

Neuronen aufweisen, die in ähnlicher Weise richtungsabhängig kodiert sind. 

Außerdem untersuchte diese Arbeit die Rolle des Kleinhirns in der sensomotorischen 

Adaptation. Zwei Experimente ergaben, dass Patienten mit degenerativen Erkran-

kung des Kleinhirns und Patienten mit Läsionen im Gebiet der oberen Kleinhirn-

schlagader sowohl eine Verminderung der Adaptation als auch eine Beeinträchtigung 

der motorischen Durchführung zeigen. Diese Ergebnisse lassen vermuten, dass ent-

weder die motorische Durchführung im Kleinhirn lokalisiert und eine Voraussetzung 

für die Adaptation ist, die an einer anderen Stelle im zentralen Nervensystem statt-

findet. Oder es ist möglich, dass sowohl die motorische Durchführung als auch die 

sensomotorische Adaptation im Kleinhirn lokalisiert sind. 
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